
Authentik
Setup Authentik

Install and Setup Authentik

Setup Authentik

Setup Authentik

Install and Setup Authentik

https://www.youtube.com/embed/KlDJ4K45M_o

Introduction
As the internet and services have become more and more the norm in our society protecting our
services with authentication has become ever more important as well. This is where amazing
projects like Authentik, and Authelia come in. These solutions give you the opportunity to setup a
Single Sign On system for all of your services. That means you just need to have one very secure
login, and you can access any of the services you use everyday.

What You'll Need
Docker and Docker Compose Installed on a Host that you can access from the Internet
A domain or sub-domain that you own and can set an A or CNAME Record for.
NGinX Proxy Manager (or other reverse proxy of your choice)
an SMTP Email Server
About 30 minutes of your time

Installation
Install Docker, Docker Compose, and NGinX Proxy Manager
via a Simple Script
You can easily install Docker-CE, Docker-Compose, Portainer-CE, and NGinX Proxy manager by
using this quick install script I created and maintain on Github. Just use the command:

wget https://gitlab.com/bmcgonag/docker_installs/-/raw/main/install_docker_nproxyman.sh

To download the script to your desired host.

Change the permissions to make the script executable:

https://www.youtube.com/embed/KlDJ4K45M_o
https://gitlab.com/bmcgonag/docker_installs/-/raw/main/install_docker_nproxyman.sh

chmod +x ./install_docker_nproxyman.sh

and then run the script with the command:

./install_docker_nproxyman.sh

When run, the script will prompt you to select your host operating system, then will ask you which
bits of software you want to install.

Simply enter 'y' for each thing you want to install.

At some point, you may be asked for your super user (sudo) password as well.

Allow the script to complete installation.

At this point, you might want to log out and back in, as this will allow you to use the docker and
docker-compose commands without the need of sudo in front of them.

Configure and Install Authentik
Let's create our folder structure. First, we want to create a parent 'docker' folder, and inside that
place any / all of our application folders we may want to run on this host. In this case our
application folder will be 'authentik'.

mkdir -p docker/authentik

Next, we'll move into our new folder and create our docker-compose.yml file. This file defines our
application containers, and helps put them all into a private network on our host so the various
parts of the overall application can communicate securely.

nano docker-compose.yml

Copy the block of yaml code from below, and paste it into the document we just opened. You can
paste in the linux terminal by right clicking, and selecting paste, or by using CTRL + Shift + V.

version: "3.4"

services:
 postgresql:
 image: docker.io/library/postgres:12-alpine
 restart: unless-stopped
 healthcheck:
 test: ["CMD-SHELL", "pg_isready -d $${POSTGRES_DB} -U $${POSTGRES_USER}"]
 start_period: 20s
 interval: 30s
 retries: 5

 timeout: 5s
 volumes:
 - ./database:/var/lib/postgresql/data
 environment:
 POSTGRES_PASSWORD: ${PG_PASS:?database password required}
 POSTGRES_USER: ${PG_USER:-authentik}
 POSTGRES_DB: ${PG_DB:-authentik}
 env_file:
 - .env
 redis:
 image: docker.io/library/redis:alpine
 command: --save 60 1 --loglevel warning
 restart: unless-stopped
 healthcheck:
 test: ["CMD-SHELL", "redis-cli ping | grep PONG"]
 start_period: 20s
 interval: 30s
 retries: 5
 timeout: 3s
 volumes:
 - ./redis:/data
 server:
 image: ${AUTHENTIK_IMAGE:-ghcr.io/goauthentik/server}:${AUTHENTIK_TAG:-2023.8.3}
 restart: unless-stopped
 command: server
 environment:
 AUTHENTIK_REDIS__HOST: redis
 AUTHENTIK_POSTGRESQL__HOST: postgresql
 AUTHENTIK_POSTGRESQL__USER: ${PG_USER:-authentik}
 AUTHENTIK_POSTGRESQL__NAME: ${PG_DB:-authentik}
 AUTHENTIK_POSTGRESQL__PASSWORD: ${PG_PASS}
 volumes:
 - ./media:/media
 - ./custom-templates:/templates
 env_file:
 - .env
 ports:
 - "${COMPOSE_PORT_HTTP:-9000}:9000"
 - "${COMPOSE_PORT_HTTPS:-9443}:9443"
 depends_on:

Once you've pasted in the code, save the file with CTRL + O, then press Enter to confirm, and exit
the nano editor with CTRL + X.

Next we need to create an environment variable file that the dockeer-compose.yml file will read.
This file allows us to customize our variables for the container setup without having to repeatedly
enter like values throughout the docker-compose file.

 - postgresql
 - redis
 worker:
 image: ${AUTHENTIK_IMAGE:-ghcr.io/goauthentik/server}:${AUTHENTIK_TAG:-2023.8.3}
 restart: unless-stopped
 command: worker
 environment:
 AUTHENTIK_REDIS__HOST: redis
 AUTHENTIK_POSTGRESQL__HOST: postgresql
 AUTHENTIK_POSTGRESQL__USER: ${PG_USER:-authentik}
 AUTHENTIK_POSTGRESQL__NAME: ${PG_DB:-authentik}
 AUTHENTIK_POSTGRESQL__PASSWORD: ${PG_PASS}
 # `user: root` and the docker socket volume are optional.
 # See more for the docker socket integration here:
 # https://goauthentik.io/docs/outposts/integrations/docker
 # Removing `user: root` also prevents the worker from fixing the permissions
 # on the mounted folders, so when removing this make sure the folders have the correct UID/GID
 # (1000:1000 by default)
 user: root
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 - ./media:/media
 - ./certs:/certs
 - ./custom-templates:/templates
 env_file:
 - .env
 depends_on:
 - postgresql
 - redis
volumes:
 database:
 driver: local
 redis:
 driver: local

nano .env

Once open, copy the file contents below, and paste them into the .env file.

I have intentionally added placeholders to most of the values. You'll want to go through and update
these placeholders to be actual values for your installation. The values you must change at a
minimum are:

PG_PASS - This value can be any long, strong password you want.

AUTHENTIK_SECRET_KEY - This values should be a long string of numbers, letters (upper and lower
case), and symbols at least 64 characters in length.

You should additionally setup the SMTP email options as this is a major part of user management
and self-service in any authentication provider, such as when a user needs to reset his / her
password, MFA device, register (if allowed). It's also how the Authentik install will send you

Note: The period in front of the filename. In unix based systems a filename starting with a
period is a hidden file, and will not be shown with commands like ls alone. Instead you
must use the flag -a (all) to show everything in a folder including hidden files, like this ls -a .

PG_USER=authentik
PG_PASS=aReallyLongStrongPasswordShouldBePutHere
AUTHENTIK_SECRET_KEY=someincrediblylongcomplexkeygoeshere
AUTHENTIK_ERROR_REPORTING__ENABLED=true
SMTP Host Emails are sent to
AUTHENTIK_EMAIL__HOST=smtp.example.com
AUTHENTIK_EMAIL__PORT=587
Optionally authenticate (don't add quotation marks to your password)
AUTHENTIK_EMAIL__USERNAME=auth@example.com
AUTHENTIK_EMAIL__PASSWORD=a-L0n6-Strong_password_should_go_here
Use StartTLS
AUTHENTIK_EMAIL__USE_TLS=true
Use SSL
AUTHENTIK_EMAIL__USE_SSL=false
AUTHENTIK_EMAIL__TIMEOUT=10
Email address authentik will send from, should have a correct @domain
AUTHENTIK_EMAIL__FROM=auth@example.com
COMPOSE_PORT_HTTP=80
COMPOSE_PORT_HTTPS=443
Authentik Version to Pull
ATHENTIK_TAG=2023.8.3

information about events, updates, etc.

Finally, for the COMPOSE_PORT_HTTP and COMPOSE_PORT_HTTPS you may want to change these
to be ports that aren't quite so common. If your host is also running NGINX Proxy Manager you
should definitely change these to less common ports, as 80 and 443 are already in use by NPM.

Once you've updated the values appropriately, you can save and close the file with CTRL + O, then
Enter to confirm, and then CTRL + X.

Now you are ready to bring up your Authentik application. Use the commands:

docker compose up -d && docker compose logs -f

The first part tells docker to get the necessary images and start the containers running in the
background, and the second part tells docker once the containers are up, show us the logs.

You can discontinue the logs with CTRL + C.

Now navigate to the IP address of your host machine, and the port you set for the non SSL (HTTP)
access in the .env file. You should see the Authentik login page. If so, then you are doing well.
Next, setup the reverse proxy.

Reverse Proxy Setup
Login to NGinX Proxy Manager (NPM) and click into the Proxy Hosts section. Select ‘Add Proxy
Host’ from the upper right, and int he modal (pop-up) window that opens, we'll begin adding the
information needed to get our domain name to resolve to our new server.

In the domain name field, enter your desired domain name. I used ‘authentik.routemehome.org’.

I own the domain ‘routemehome.org’, and have setup an A-record in DNS on the domain that will
point the domain name to my public IP address.

Next, enter the private IP of your Authentik server. You can use ‘localhost’ if the Authentik server
is running on the machine you are running NPM on. Next, enter the port number you entered in
the .env file. If you didn't change it, it will be 80.

Enable the options for ‘Block Common Exploits’ and ‘Websocket Support’.

Now move to the SSL tab, and select “Request a New Certificate” from the drop-down box.

Enable the options for ‘Force SSL’, ‘HTTP/2 Support’, and both ‘HSTS’ options.

Enter your email address in the Email field, and enable the ‘Agree to Terms of Service’ option.

Click ‘Save’. If all is setup properly, the modal window will simply go away after a few seconds
(maybe 30). Then you'll have a CA Certified LetsEncrypt certificate for your Authentik server.

You should now be able to get to your Authentik install using the FQDN (fully qualified domain
name).

Configure
To create your first (admin) user, you need to go to your domain at a special address.

https://authentik.yourdomain.com/if/flow/initial-setup/

Of course, use your actual domain name.

Enter your preferred email, and learn from my mistake and make sure it's correct before moving
on. Next enter a long, strong password, then enter it again to confirm it. I cannot stress enough,
you should absolutely use a password manager for keeping and helping you create long, strong
passwords. I highly recommend Bitwarden, and Vaultwarden if you prefer to self host.

Click Create Account, and you should be logged in as an administrative user.

Proxy Login
Make sure you have an outpost setup, and setup properly. We can use the authentik embedded
outpost in this case.

Make Sure Outpost is set Correctly
Click on Outposts on the left side menu, then click the edit icon in the list of outposts. if this is a
new install you likely only have one outpost at this point.

In the pop-up window that opens, verify that your ‘authentik_host’ has the same URL as your
Authentik site. If you are using https://auth.my-great-domain.com to reach your Authentik install,
then you want this value to be the same.

You can now dismiss the pop-up if everything looks good. Additionally, in the outposts list, you
should see a green check mark under health and version.

https://authentik.yourdomain.com/if/flow/initial-setup/
https://auth.my-great-domain.com

Add a Provider
Next we need to add a provider for our setup.

Click on ‘Providers’ in the left side menu.

In this view, click on ‘Create’ at the top.

Again, when the pop-up window opens, select ‘Proxy Provider’, then click Next.

On the next page, enter a name that identifies the application you are creating a proxy
authenticator for. The Proxy authentication is useful for applications and services you run that
don't provide authentication in the app, but that you might like to expose to the internet. For
instance, a dashboard, speedtest, etc.

Choose ‘Authorize Application’ from the Authentication Flow drop down.

Next, what you select will depend on how you are proxying your service traffic to your applications
and service. If you are using a reverse proxy like NGinX Proxy Manager, Caddy, Traefik, etc, then
you'll want to choose ‘Forward Auth (single application)’. If, however, you don't yet have a reverse
proxy setup, then you'll potentially want to use the ‘Proxy’ option, which then turns Authentik into
a reverse proxy for the site as well.

In our case we'll go with ‘Forward Auth (single application)’.

Now fill in your sites externally available FQDN (fully qualified domain name), for instance
https://mydash.example.com

You can change Token Validity to any timeframe you wish, but leaving it at 24 hours should be fine.

Click ‘Finish’.

You should be returned to your ‘Provider’ list, and you should see the provider you just created.
 You'll likely have a warning in the list that the provider is not associated to any applications. No
worries, we'll fix this right now.

Add an Application Entry for the Provider
In the left side menu click on ‘Applications’.

On the ‘Applications’ page, click the ‘Create’ button at the top, and you'll be presented with a pop-
up window (modal window) where you need to fill in your application information.

https://mydash.example.com

Give your application a name that helps you easily identify the application. If you are creating an
authentication for your dashboard, then call it ‘Dashboard’ for instance. As you fill in the ‘Name’
field, you'll notice that the ‘slug’ field is automatically filled in. The slug should not be changed
unless you have a reason to do so, and the slug should always be lowercase, and not have spaces
in it.

Now move down to the ‘Provider’ field, and select the provider you just created.

When creating these types of authentication flows, you always want to create a new provider, and
a matching application entry for that provider, then select the provider for that application.

Finally, click the ‘Create’ button at the bottom of the modal window.

Ensure the Provider is now Satisfied with
the Application Entry
Navigate back to your Providers list on the left, and notice that our provider no longer shows the
warning about not being associated to an application.

Set the Application in Outposts
We are almost there. Navigate back to ‘Outposts’, and click the edit icon next to our outpost. In
the modal window, next to the ‘Applications’ label, you should now see your application listed. You
will click on this line in the field to select the application.

Click the ‘Update’ button at the bottom of the modal window. You should now see the application
name listed under the ‘Providers’ column for the outpost. As you add more applications and
providers, you'll see them added for any outpost you add them to. In this case, you can use this
same outpost for multiple applications and providers needing a simple Forward Auth setup.

Get your Reverse Proxy Snippet
Finally, navigate back to ‘Providers’ on the left side menu, and click the Name of your provider.
This will show the Provider details in a new page. Scroll down, and notice various reverse proxy
options are shown as tabs. Select the reverse proxy you are using, and you'll see a snippet of code
that you'll use to setup your reverse proxy entry so it will start using Authentik before the
application will load.

In our case, we've used NGinX Proxy Manager, so I'll click that tab, and copy that bit of code.

I'll open NGinX Proxy Manager and select the 3-dot icon on the row for my application, then select
‘Edit’.

Move to the ‘Advanced’ tab in the modal window, and paste in the code snippet.

In the pasted snippet, scroll down to the line for ‘proxy_pass’, and change the FQDN for your
Authentik instance to its internal IP address and port number.

NOTE: This is only done if you are running NGinX Proxy Manager, Authentik, and your Application
on the same local area network.

In my case I change authentik.routemehome.org to 192.168.10.42.

Click ‘Save’.

If you now try to load your application, you should be prompted to login with Authentik. Verify you
can login using your credentials, and you'd now setup.

OIDC OAuth2
Create an OIDC Provider
Creating an OIDC provider is really pretty straight forward. The more daunting task for me is
figuring out what information each application may need for the OIDC connection. Even that is
pretty easy though.

Again, for each application that you want to access, you need to create a provider, and an
application entry that goes with the provider.

Let's tackle creating the Provider first.

1. Click Providers on the left side menu.
2. Click ‘Create’ at the top.
3. Select ‘OAuth2/OpenID Provider’
4. Click ‘Next’
5. Name your Provider with the name of the application you'll use it with (e.g. 'NextCloud

OAuth')
6. Select the default Authentication Flow.
7. Select the default Authorization flow for explicit consent.
8. Leave Client Type as Confidential.

9. If you know you need a special redirect URI / Origin, fill it in, otherwise leave it blank and
click ‘Finish’.

A couple of things to note. You may have noticed the fields with Client ID and Client Secret. You'll
need these on pretty much every application with OAuth. You can always get back to these values
in the Providers list, then click the ‘Edit’ icon to the right of the Provider you need them for.

Create the OIDC Application Entry
Next, we'll need to add an entry for our Application. Remember, each Provider must have an
associated Application entry before it can be used for Authentication / Authorization.

1. In the left side menu, navigate to Applications, and click ‘Create’ at the top of the window.
2. Fill in a ‘Name’ for the application (e.g. “Headscale UI”). Notice the ‘Slug’ field will auto-

fill. There's no need to change this field.
3. Select the Provider you just created from the drop list.
4. Set ‘Policy engine mode’ to ‘Any’ and click ‘Create’.

Note: If you'd like to have the application represented by it's Logo, then you can upload an image (I
recommend png or svg for transparency) under the expandable ‘UI settings’ section before clicking
‘Create’, or anytime in the future by simply editing the Application entry.

If you now navigate back to your Providers list, you'll see that you Provider no longer shows a
warning since you've now associated an Application entry to it.

Adding Your OIDC Credentials to the
actual Application
This step will greatly depend on the application you are setting up with OIDC. For Headscale
WebUI it is very straight-forward. For Nextcloud you need to add a bit more information, but the
Nextcloud documentation on doing this is very good.

Generally you'll need 3 or 4 of the values available from your Provider entry.

1. Client ID (sometimes listed as Client Key) - You get this by clicking the edit icon to the
right of the provider entry.

2. Client Secret - You get this by clicking the edit icon to the right of the provider entry.
3. OpenID Configuration URL - You get this by clicking on the Provider Name link in the

Providers list.
4. OpenID Configuration Issuer - You get this by clicking on the Provider Name link in the

Providers list.

There are other URLs listed that may be required for some applications, so familiarize yourself with
those labels,, and know they are there in case you need them.

Four our purpose in setting up OIDC for Headscale WebUI we need to use just the Client ID, Client
Secret, and Configuration URL.

In your docker-compose.yml file for Headscale / Headscale WebUI, set the Web UI AUTH_TYPE to
“oidc”.

Comment out the entries for BASIC_AUTH_USER and BASIC_AUTH_PASS with a hashtag (#).

Uncomment the values for OIDC_AUTH_URL, OIDC_CLIENT_ID, and OIDC_CLIENT_SECRET.

Copy and paste the appropriate values from your Authentik provider, into the proper place next to
your entries.

Keep in mind that yaml code is space dependent, so make sure you align everything properly using
spaces as you go.

Save, and exit the docker-compose.yml file, and restart your docker-compose. I recommend doing
a complete docker-compose down and then docker compose up -d to make sure the new changes take
effect. You can check the compose logs to make sure no errors came up.

Now, navigate to your Headscale WebUI address, and you shud be directed to your Authentik site
for login first.

Note: In Firefox, I occasionally get into a login loop. This is something to do with Firefox's caching
system. You can usually get around this by logging in through a Private Browsing Window, or using
another browser the first time. I have noticed that the loop does stop after completely closing
firefox for a little bit.

Finally, you may need to go back into your Provider entry, and adjust the 'Redirect URI / origins"
and make sure it has “https” in the address. Getting a Redirect URI error in your Authentik site is
an indicator this may not be set properly. My production setup did this without issue, but my
testing system put http only for some reason, and once I changed it everything worked perfectly.

Support My Channel and Content
Support my Channel and ongoing efforts through Patreon:
https://www.patreon.com/bePatron?u=234177

https://www.patreon.com/bePatron?u=234177

