
https://www.youtube.com/embed/lnYNWcPmDRo

JitsiMeet is an amazing, powerful, open source, self hosted vide, audio, and collaboration server. It
has the option for Chat, shared screens, and so much more, all from your modern web browser.

Before the Pandemic, JitsiMeet was as simple as typing in a URL (e.g. https://meet.jit.si) adding a
slash '/', and then naming a room. Share that link with anyone and everyone, and they can all join
without issue.

When the pandemic happened,and more people began turning to open source, self hosted projects
to help their businesses, classrooms, and social interactions continue furing lock-down periods and
heightened remote work / learning, it became clear that JitsiMeet needed some authentication
around it.

Today, I'll be going through how to setup two of those forms of authentication. The first is the
'internal' authentication method where the user information is stored as part of your jitsi install.
This is great for a single user, or maybe even a few users, but much beyond that, and setting up
the user accounts will quickly become cumbersome at best.

For larger organizations, we have more options. We'll be looking at the LDAP option, and I'll be
showing how I used FreeIPA to setup the LDAP authentication with JitsiMeet as well.

A server, vm, or container to host the JitsiMeet software.
Docker-CE and Docker Compose installed on that server.
A domain / sub-domain name that you can add A-Record DNS entries for.
(Optional) A Reverse Proxy
(Optional, but required for the second part) An LDAP server and access to the appropriate
settings of that server (OpenLDAP, FreeIPA, etc).
About 30 minutes of your time

Jitsi Meet with Authentication

Jitsi Meet with Authentication

What You'll Need

https://www.youtube.com/embed/lnYNWcPmDRo

If you're on Windows, then go get the official docker stuff for Windows. I don't use Windows, so
couldn't begin to tell you how to do it.

If you're on Linux (Smart move by the way), then you can likely install Docker and Docker compose
with a one line script.

curl https://get.docker.com | sh

Enter your superuser password when prompted, and let the script do its work.

Add your user to the 'docker' group, and you'll be able to run docker and docker-compose
commands without using sudo every time.

sudo usermod -aG docker <your-username>

Replace <your-username> with your actual username on the system.

Now log out and back in, and you'll have access to the docker and docker compose commands.

First, we'll create a folder structure for our docker based application(s). I do this so it's very easy to
zip up the parent 'docker' folder, and then back it up on a backup server else where in case of
disaster.

mkdir -p docker/jitsi

Now, we'll move into the new jitsi folder:

cd docker/jitsi

Next, we'll download teh necessary files to this location with the command:

wget $(curl -s https://api.github.com/repos/jitsi/docker-jitsi-meet/releases/latest | grep 'zip' |
cut -d\" -f4)

This will download the latest releae version of the files for us in a .zip file.

Let's install the 'unzip' tool, and decompress this file.

Ubuntu / Debian

sudo apt install unzip

Install Docker-CE and Docker Compose

Get the Jitsi Docker Compose Files

RedHat / CentOS / Fedora

sudo dnf install unzip

Now we can unzip the file we downloaded with:

unzip ./stable-<version number>

Replace <version number> with the actual file name and number you downloaded.

After it's unzipped, you'll have a new folder with a really long name. Mine is:

jitsi-docker-jitsi-meet-aae3756

Let's change that by renaming it:

mv jitsi-docker-jitsi-meet-aae3756 jitsi-meet

This will rename the folder to 'jitsi-meet'. Now we can move into the folder, and start editing the
files we need in order for the system to function the way we want it to.

cd jitsi-meet

We'll make copies of two of the files to work from. First, let's copy the 'env.example' file to a new
hidden file called '.env'. This is the file docker compose uses by default for configurations.

cp env.example .env

Next, let's copy the docker-compose.yml file to a new file called 'compose.yaml' (this is the newer
naming convention used by Docker Compose). Then we'll rename the original file by adding a '.bak'
extension to the end, so Docker Compose will default to our 'compose.yaml' file.

cp docker-compose.yml compose.yaml

'mv docker-compose.yml docker-compose.yml.bak'

Now we need to make some changes to the example .env file we are starting with. This is the place
we want to put any configuration values whenever possible.

Copy Docker Compose and
Environment Files

Edit our .env file

Open the 'env' file to make changes. Note that any line beginning with a '#' hashtag / pound sign /
number sign is a comment, and is ignored by Docker when the containers are started.

nano .env

Move down to the line that says CONFIG=~/.jitsi-meet-cfg , and change this by removing the '~'
tilda, and replace it with a period '.'. It should look like this now:

CONFIG=./.jitsi-meet-cfg

This change puts our configuration volume inside of our parent docker/jitsi/jitsi-meet folder with
the rest of our files.

Next, we'll move down to the HTTP_PORT and HTTPS_PORT entries. If you have nothing using the
default ports of 8000 and 8443, then feel free to leave these as is. If, however, you have other
applications already using these ports, then you should change to a port that is not in use on the
system already. Just remember what you change them to, as we'll need them when setting up our
Reverse PRoxy. I left mine as-is.

Next, let's set our timezone properly. for the TZ=UTC setting, remove UTC and enter your timezone.
I'm in Central US Time, so I entere TZ=America/Chicago .

Now for one of the big one. The PUBLIC_URL value is very important. This tells the JisiMeet system
where to expect a request to come to for it's pages. So, if I want users to reach my JitsiMeet site at
https://meet.itsawesome.com , I need to enter that for the PUBLIC_URL .

PUBLIC_URL=https://meet.itsawesome.com

For the JVB_ADVERTISE_IPS value, we want to enter the IPv4 address(es) where the JitsiMeet will be
reached. I entered two addresses. First my private LAN address, then my public IP address.

JVB_ADVERTISE_IPS=192.168.21.14,209.41.5.158

You don't have to enter more than 1 address if you are setting up your server facing the internet
directly through it's Public IP.

At this point, let's quickly save so we don't lose any chagnes. Use CTRL + O to save, then press
Enter to confirm.

Continuing down, we need to move way down to the entry for Authentication configuration .

In this section we'll be initially setting up the 'Internal' authentication method.

First, uncomment the line that says #ENABLE_AUTH=1 , which means just remove the # at the
beginning of that line.

Setting Up Internal Authentication

Next, you need to decide if you'll have users who are "guests" (users who don't have any
authentication credentials for this server), who may need / want to join a meeting. If you do, then
we need to uncomment the line that says ENABLE_GUESTS=1 (again, just remove the # from the
beginning of the line.)

If you don't want to allow guests, then only users who can authenticate will be able to join
meetings.

Users who are guests, cannot start a meeting, they can only get prepared, then will have to wait
until a user who can authenticate starts the meeting to allow the guests in.

Finally, we need to set the AUTH_TYPE . This is an important one, as it determines what other
informaiton you may need to enter in order to allow users to authenticate for meetings. We'll start
with 'interna'.

AUTH_TYPE=internal

Again, let's save our changes. CTRL + O to save, then press Enter to confirm.

We'll scroll down some more to get to the Security section. Here you'll be asked to enter multiple
long strong passwords in order to better protect your site. Never fear! The good folks at JitsiMeet
mad e simple script to help us do this easily.

Let's exit our .env file with CTRL + X (if you are prompted to save, then press 'y', and then press
Enter).

Now, let's run the script by entering:

./gen-passwords.sh

After running, you should be returned to a simple command prompt.

We'll jump back into our .env file with:

nano .env

And we can move down quickly to the Security section by typing CTRL + W (search), then enter '#
Security', and press Enter.

If you look at the six password request fields now, they should each have a different long, strong
password filled in, randomized by the script. Yay!

Finally, let's uncomment the RESTART_POLICY=unless-stopped , as this set's this as the restart for each
of the containers.

Save one last time with CTRL + O, then press Enter to confirm, and exit the nano editor with CTRL
+ X.

At this point, there should be no changes required in our compose.yaml file. Let's pull the images for
our setup with:

docker compose pull

If everything pulls down with no errors, then we are ready to start our server up. We can do that
with two concatenated commands:

docker compose up -d && docker compose logs -f

The first part tells Docker Compose to start the server containers and run them detached in the
background (-d). The second part tells Docker Compose to display the live log output as the
contares are starting up, and allows us to follow (-f) the logs. When you're done looking at the logs,
you can stop following them with CTRL + C.

Now, our application is running, but remember, we set a domain / url for it to be accessed from.
Let's go setup our DNS A-Record and / or Reverse Proxy.

DNS A Records allow you to point a domain / subdomain that you own at a specific IP address. In
this case, we likely want a public IP address.

I own the domain opensourceisawesome.com . I setup an A-Record in my DNS settings on my domain
registrars page that points meet.opensourceisawesome.com to the public IP address of my server host.
My application is not running directly on the host, however, and is instead running in a virtual
machine (called docker). So I need to "proxy" the traffic from my host through to that virtual
machine.

I can setup my reverse proxy (I use NGinX Proxy Manager) to listen for requests for
meet.opensourceisawesome.com , and when it receives such a request, have it forward that traffic to
my internal private IP and the Port number I setup. In my case I set the following settings in NGinX
Proxy Manager.

Setup DNS and Reverse Proxies

Details Tab

Domain Name: meet.opensourceisawesome.com

Sheme: https

Forward Hostname / IP: 192.168.42.188

Port: 8443 <-- the HTTPS port

Block Common Exploits: enabled

Websockets Support: enabled

Once I set those settings, I clicked save, and waited for about 20 seconds. LetsEncrypt checked
that my server could be reached, and then issued a valid SSL certificate for my site.

Now, we can open our favorite modern web browse, and go to our JitsiMeet URL to make sure it
loads.

I went to https://meet.opensourceisawesome.com and it loaded just fine.

If, however, I try to create a room, and join it, when I finish allowin my camera and mic, and enter
my name, then I'll be stopped, and told I need to login as a moderator, or wait for a moderator to
join before I can join the room.

Here is where the internal authentication method becomes cumbersome. We have to manually
create users and passwords for our Jitsi instance through the command line, inside the docker
container for Prosody.

If you only have 1 or 2 users, no big deal, but if you get much beyond 4 users, it will start to be a
pain, and if you are trying to keep up with people being hired, and leaving a company, it will be a
nightmare in a hurry. But, let's set one up, and you can decide if you want to keep it this way.

Let's go back to our command line, and enter the command:

docker compose ps

This command will list out the running containers from the compose.yaml file in this folder.

We will see several heading, the first of which is NAME . We need to find the name of the prosody
container.

In mine it's jitsi-meet-jitsi-prosody-1 .

SSL Tab

SSL Certificate: Request a new certificate

Force SSL: enabled

HTTP/2 Support: enabled

HSTS Enabled: enabled

HSTS Subdomains: enabled

Email: entered@yourdomain.com

Accept LetsEncrypt TOS: Enabled

Setup a User for Internal Auth

So, let's get into this container with:

docker exec -it jitsi-meet-prosody-1 /bin/bash

You should see a different prompt come up in your command line, which indicates you are inside of
a container, and it's likely the container id.

From here we can now enter the JitsiMeet command to add a user.

prosodyctl --config /config/prosody.cfg.lua register <username> meet.jitsi <users-assigned-
password>

Replace <username> and <users-assigned-passwrod> with the actual username and password you
want for the user. You'll need to repeat this for each user you want to have access to start
meetings on the system. If you chose to not allow guests, then you'll need to do this to create a
user for every person who needs to join a meeting.

Now you can exit the container with exit .

Head back to your browser, refresh the page, and now try to join the meeting. Click the 'Login'
button when prompted, and enter your username and password. If all went according to plan, you'll
be put into your active live meeting room.

Not ideal for large groups, but if it's just you, then it's probably just fine.

If you're looking for a more flexible way to control who can and can't login to your JitsiMeet
instance, then you have LDAP as a potential solution. I setup FreeIPA a few videos back. One of the
things it provides is the ability to have LDAP authentication.

We can put that to use here to make it easier to manager users, and hopefully provide them more
of an SSO type login as needed.

If you havne't setup FreeIPA, and are intereseted in it, here's a link to my Video on it.

Assuming you have a LDAP server setup (preferrably FreeIPA as that's what I'm using), then let's
move forward with getting JitsiMeet to authenticate a user with it.

First, we'll stop our containers with the command:

docker compose down

Once stopped, we need to remove the configuration mapped volume we setup in the .env folder
earlier, so we can get out LDAP configuration setup instead.

LDAP using FreeIPA

sudo rm -rf .jitsi-meet-cfg

Now, we'll edit our .env with:

nano .env

Use CTRL + W, and enter the term "# Authentication" then press Enter to jump down to the
Authnetication section.

Here, we just need to change the AUTH_TYPE from internal to ldap . After the change it should look
like:

AUTH_TYPE=ldap

Save this change with CTRL + O, then press Enter to confirm.

We'll scroll down until we get to the "LDAP Authentication" section. Here we'll need some
information about our FreeIPA server setup. You need to have the following things:

1. Your FreeIPA fully qualified domain name (even it it's only a local domain), or your FreeIPA
IPv4 Address.

2. Your FreeIPA Base DN. You can get this from the FreeIPA server in the command line by
looking at the 'default.conf' file in /etc/ipa .

cat /etc/ipa/default.conf

Find the value for basedn in that file.

Back in our .env file, let's uncomment the field for LDAP_URL and enter the URL to your FreeIPA
server. In my case, my server is local only, and it's FQDN is freeipa.fixitdelrio.local , so my line
looks like:

LDAP_URL=ldap://freeipa.fixitdelrio.local

Next, uncomment the line for LDAP_BASE . This is where you'll need the 'basedn' information from
your server.

My default.conf file shows my 'basedn' as:

basedn = dc=fixitdelrio,dc=local

We also need to add a CN component to the LDAP_BASE for 'accounts'.

We need to structure the LDAP_BASE in the following way, using your own values for the basedn
fields of course.

LDAP_BASE=CN=accounts,DC=fixitdelrio,DC=local

Next, move down to the line that starts with #LDAP_FILTER=(sAM... , and uncomment this line.
Remove the contents inside the parentheses, and replace them with uid=%u . The proper line
should look like:

LDAP_FILTER=(uid=%u)

Uncomment the line for LDAP_VERSION=3 , and finally uncomment the line for LDAP_USE_TLS=1 .

The whole block should look like this:

LDAP authentication (for more information see the Cyrus SASL saslauthd.conf man page)

#

LDAP url for connection

LDAP_URL=ldap://freeipa.fixitdelrio.local

LDAP base DN. Can be empty

LDAP_BASE=CN=accounts,DC=fixitdelrio,DC=local

LDAP user DN. Do not specify this parameter for the anonymous bind

#LDAP_BINDDN=UID=admin,OU=users,DC=example,DC=com

LDAP user password. Do not specify this parameter for the anonymous bind

#LDAP_BINDPW=some-password

LDAP filter. Tokens example:

%1-9 - if the input key is user@mail.domain.com, then %1 is com, %2 is domain and %3 i>

%s - %s is replaced by the complete service string

%r - %r is replaced by the complete realm string

LDAP_FILTER=(uid=%u)

LDAP authentication method

#LDAP_AUTH_METHOD=bind

LDAP version

LDAP_VERSION=3

LDAP TLS using

LDAP_USE_TLS=1

List of SSL/TLS ciphers to allow

Save your changes with CTRL + O, then press Enter to confirm, and exit the nano editor with CTRL
+ X.

One of the things I ran into, is with my FreeIPA server being only on the LAN / VPN, and me not
setting up DNS to deal with it (:-s), is that the Prosody Container didn't have a way to route to my
FreeIPA server, and thus logging in failed. So, let's fix that now.

We can modify our compose.yaml file to allow the Porsody container to know where our server is.
Normally you would add an entry in your /etc/hosts file, but in this case the great people at the
Docker and Docker Compose projects thought of this, and gave us an easy way to fis it before we
bring up our containers.

nano compose.yaml

Now, scroll down to the section for the prosody: service. Mine shows # XMPP server right above it.

Move your cursor down to the volumes line, and hit Enter to make a new blank line above it. Make
sure to fix any spacing issues, as yaml is space-dependent.

Now insert a new entry lined up directly above the 'v' in volumes: . Here we want to add
extra_hosts: , then go to the next line, and indent 2 more spaces beyond the 'e' in extra_hosts: .
Here we'll add a line for our FreeIPA server hostname, and another for the FreeIPA fqdn. Mine looks
like:

#LDAP_TLS_CIPHERS=SECURE256:SECURE128:!AES-128-CBC:!ARCFOUR-128:!CAMELLIA-128-CBC:!3DES->

Require and verify server certificate

#LDAP_TLS_CHECK_PEER=1

Path to CA cert file. Used when server certificate verify is enabled

#LDAP_TLS_CACERT_FILE=

Path to CA certs directory. Used when server certificate verify is enabled

#LDAP_TLS_CACERT_DIR=

Wether to use starttls, implies LDAPv3 and requires ldap:// instead of ldaps://

#LDAP_START_TLS=1

Make sure your Prosody container can find your
FreeIPA Server

The whole section now looks like this:

Along with everything before and after that part, of course.

This extra_hosts: section allows us to add entries for the container to know about, even if it isn't
using the host server's networking directly. It's like adding to the /etc/hosts file inside the
container essentially.

Save your changes with CTRL + O, then press Enter, and exit the nano editor with CTRL + X.

Now, we can restart our Jitsi Containers, and check our work.

docker compose up -d && docker compose logs -f

Again, as long as you don't get any serious errors, or containers constantly exiting and trying
again, you should be set after 30 seconds or so. You can quit following the logs with CTRL + C.

Open your browser back up, and refresh the page at the very least. If possible clear the cache just
to make sure the updates are fresh and ready.

 extra_hosts:

 - "freeipa:192.168.10.17"

 - "freeipa.fixitdelrio.local:192.168.10.17"

prosody:

 image: jitsi/prosody:${JITSI_IMAGE_VERSION:-stable-10133-1}

 restart: ${RESTART_POLICY:-unless-stopped}

 container_name: jitsi-prosody

 expose:

 - '${XMPP_PORT:-5222}'

 - '${PROSODY_S2S_PORT:-5269}'

 - '5347'

 - '${PROSODY_HTTP_PORT:-5280}'

 labels:

 service: "jitsi-prosody"

 extra_hosts:

 - "freeipa:192.168.10.17"

 - "freeipa.fixitdelrio.local:192.168.10.17"

 volumes:

 - ${CONFIG}/prosody/config:/config:Z

 - ${CONFIG}/prosody/prosody-plugins-custom:/prosody-plugins-custom:Z

Create a room on your Jitsi server, allow your mic and / or camera, enter you name, and click the
Join button. You should again be prompted to 'Login', so click that 'Login' button, and when
prompted enter your LDAP / FreeIPA username and password, then proceed.

If we've set everything up properly, you should be placed into your live meeting room.

This is a lot, and believe me, I know it. It took me about a week of tinkering, researching, and trying
and failing before I got this to work. Be patient, think through the process, and be persistent.

I hope this helps you, and if it does make sure to share it with others.

Revision #1
Created 6 May 2025 15:28:21 by Brian McGonagill
Updated 6 May 2025 15:30:05 by Brian McGonagill

