
Install Moodle

Online Training

Moodle is an LMS (Learning Management System). It's a very large and complex system, intended
for setting up, creating, hosting, and scheduling learning sessions. These can be either or both
online learning, or in class / in person style learning.

it's a powerful, open source system, and for a business in IT or an MSP, a valuable service to be
able to rpovide. Particularly when considering you may need to train client users on best practices
for better online security, privacy, and safe habits. Perhaps you have setup a new software for a
client, and you need to provide training for their users on how to create an account, login,
navigate, and perform the basic functions of the software.

Today we'll install moodle, and get you setup to provide e-Learning services.

A server or VM / Container to install the application software on.
Docker and Docker Compose installed on the host server / VM / Container
(optional) a domain / sub-domain to host your site at (e.g.
myclasses.mygreatdomain.com)
(optional) a Reverse Proxy to help get traffic onto the right service.
About 20 minutes of your time.

This is not an in depth overview of how to configure or use the moddle software, either as an admin
or student. It is massive, and far too much to cover in a video or online tutorial. Instead, I highly
recommend you seek out other videos on more specific areas of Moodle, and definitely check out
their extensive user and admin guides.

1. Setup a server with a non-root, sudo user.

add user <username>

usermod -aG sudo <username> or on CentOS, Fedora, RedHat usermod -aG wheel <username>

Install Moodle

What You'll Need

What this tutorial is not:

Installing Docker-CE (Community
Edition) and Docker Compose

1. Install Docker-CE and Docker Compose

curl https://get.docker.com | sh

1. Add your non-root user to the docker group.

sudo usermod -aG docker <username>

1. Log out and back in.

1. Create a folder structure for our Moodle application:

mkdir -p docker/moodle

1. Inside the new folder, we need to create a file called "compose.yaml", and three folders.

cd docker/moodle

mkdir moodle_data

mkdir mariadb_data

mkdir moodledata_data

nano compose.yaml

1. We need to add the code to our compose.yaml file now that it's created and open.

Setup for Our Moodle Install

services:

 mariadb:

 image: docker.io/bitnami/mariadb:latest

 container_name: moodle_mysql

 environment:

 - MARIADB_ROOT_PASSWORD=<a-long-strong-password>

 - MARIADB_PASSWORD=<a-different-long-strong-password>

 - MARIADB_USER=moodle

 - MARIADB_DATABASE=moodle

 - MARIADB_CHARACTER_SET=utf8mb4

 - MARIADB_COLLATE=utf8mb4_unicode_ci

 volumes:

 - ./mariadb_data:/bitnami/mariadb

 moodle:

In the above file, there are multiple values you'll need to change, and make unique to your
installation and setup. I have marked those fields by surrounding the value in less than and greater
than signs ("<" and ">").

In a few cases I also added a comment about the values, in case you need to adjust them for some
reason. Finally, and most importantly, make sure the values for MARIADB_PASSWORD in the first
section and MOODLE_DATABASE_PASSWORD in the second section match exactly. This is important
for the application to function.

 image: docker.io/bitnami/moodle:4.5

 container_name: moodle

 ports:

 - 80:8080

 - 443:8443

 environment:

 - MOODLE_DATABASE_HOST=mariadb

 - MOODLE_DATABASE_PORT_NUMBER=3306

 - MOODLE_DATABASE_USER=moodle

 - MOODLE_DATABASE_NAME=moodle

 - ALLOW_EMPTY_PASSWORD=no

 - MOODLE_DATABASE_PASSWORD=<a-different-long-strong-password> # <-- same as the

MARIADB_PASSWORD from the first section.

 - MOODLE_HOST=<name.mygreatdomain.org>

 - MOODLE_REVERSEPROxY=true # <-- if you're using a reverse proxy make it true, otherwise

false

 - MOODLE_SSLPROXY=true # <-- if you are using LetsEncrypt through your proxy, again make

it true, otherwise false

 - MOODLE_SMTP_HOST=<smtp.somemailprovider.com>

 - MOODLE_SMTP_PORT=587

 - MOODLE_SMTP_USER=<leanring@somemailprovider.com>

 - MOODLE_SMTP_PASSWORD=<some-email-password-for-the-user-above>

 - MOODLE_SMTP_PROTOCOL=tls

 - MOODLE_LANG=en

 - MOODLE_USERNAME=<admin_username>

 - MOODLE_PASSWORD=<admin_password>

 volumes:

 - ./moodle_data:/bitnami/moodle

 - ./moodledata_data:/bitnami/moodledata

 depends_on:

 - mariadb

When done setting your values, save the file with CTRL + O, then press Enter to confirm, and exit
the file with CTRL + X.

Now let's pull our images down from dockerhub or github.

docker compose pull

Once pulled, we'll start our virtual machines (containers) with

docker compose up -d && docker compose logs -f

The above is a set of two commands concatenated with two ampersands (&&). The first command
tells docker compose to start the containers from the images we pulled down, and run those
containers in detached mode (-d). The second command tells docker compose to show us the logs
when the containers start, and follow (-f) the output as it's generated.

When we are done viewing the logs, we can use CTRL + C, to stop seeing them being output to the
screen.

Our system should now be up and running, but if we want our users to be able to access it easily,
we need to setup a reverse proxy entry so they can use a URL instead of an IP Address and port
number.

I use NginX Proxy Manager, but feel free to use any reverse proxy you are comfortable with.

1. You must own the domain that you are setting up for this site, and have the ability to
2. Set A-Records for subdomains and / or this main domain.
3. Add new Subdomains to the main domain.

I own "opensourceisawesome.com", and I created an A-record that points
*.opensourceisawesome.com to my public IP address where NGinX Proxy Manager is running.

A --> *.opensourceisawesome.com --> 76.24.31.143

Now< I can create any subdomain I need inside NGinX Proxy Manager, and tell it where the service
for that subdomain is running.

In NGinX Proxy Manager, I created learn.opensourceisawesome.com and told it to point ot the private
IP address of my VM running the Moodle install. In the "Port" field, I entered 80 , as this is what's
mapped on the left side of the port mapping in our "compose.yaml" file.

Reverse Proxy Setup

Pre-setup Requirements.

I ticked the two options for "Block Common Exploits" and "Websockets Support", then moved to the
SSL tab.

In the SSL Tab, I changed "None" to "Request a new certificate", then ticked the boxes for "Force
SSL", "HTTP/2 Support", and both options with HSTS in them. Finally, I ticked the box to accept the
LetsEncrypt terms of service, and made sure my email was entered.

Click 'Save'. This will take anywhere form 20 to 45 seconds, but if the pop-up windown in NGinX
Proxy Manager just closes with no errors, you should now be able to access your domain /
subdomain in your favorite browser.

You will see a fairly blank starting page, as there is nothing configured so far. In order to configure
your site, you'll want to go to your URL and add /admin to the end of it. My domain is

https://leanr.opensourceisawesome.com/admin

Once, there, use the username (MOODLE_USERNAME) and password (MOODLE_PASSWORD) you
setup in your "compose.yaml" file to login as an admin user.

From here, the settings and configuration are available for you to begin configuring your Moodle
learning site.

Moodle is a very massive, powerful, flexible site. I highly recommend you read their
documentation, set aside time to learn how to configure the site, and even take your own notes
about configurations you are making. It's far too much to cover in a video, or this article, but it's
there and ready for you to jump into.

Support my Channel and ongoing efforts through Patreon:
https://www.patreon.com/awesomeopensource

Buy me a Beer / Coffee: https://paypal.me/BrianMcGonagill

Support My Channel and
Content

https://www.patreon.com/awesomeopensource
https://paypal.me/BrianMcGonagill

