
Mastodon

Self Hosted
Dashboards

Dashy - Widgets

Adding Widgets to the Dashy Dashboard

Heimdall

Install Heimdall, a beaiful shortcut and informational dashboard

Dashy

Dashy - Powerful, Informative, Configurable Self-Hosting Dashboard

Homepage

Install Homepage

https://fosstodon.org/@MickInTx

Dashy - Widgets

Dashy - Widgets

Adding Widgets to the Dashy
Dashboard

https://www.youtube.com/embed/dyur-NDngBc

I showed you how to setup and use a really nice homepage / dashboard for all of your self hosted
services a while back called Dashy. I've stuck with it since then, and have just been super happy
with it. It has active development, and tons of new features since then. One of those features is
the ability to add all kinds of other widgets to the dashy interface.

Many of you have asked me how to add those widgets, so here we go.

Depending on what you're trying to view / see in your dashboard, you may need to install another
bit of software on your server to provide the information for the dashboard to show. In my case,
I'm going to walk you quickly through installing Glances, a really cool application that can provide
you all kinds of data about your system. You can view it directly in the terminal / cli, or it can be
presented as a web page (which is what we'll be using today).

I have a video on Glances and NetData that I'll link here as well for you to check out.

What You'll Need
Dashy Installed and Ready to go - I have a video on it here, if you want to go through that
first and get it installed.
Glances running as a web server and background service (we'll go through that next)
About 15 minutes of your time.

https://www.youtube.com/embed/dyur-NDngBc
https://www.youtube.com/watch?v=EI81Dyi04_8
https://www.youtube.com/watch?v=QsQUzutGarA

Installing Glances
You need to have python3 and pip3 installed. So,d epending on your distro, you may need to use a
different package manager for this, than I do.

I'm using Ubuntu 20.04, so I'll be using the apt package manger. If you're running Debian / Ubuntu
based distros, the commands should work for you as is.

If you're using Fedora, RedHat, or Centos (Alma, Rocky), you'll probably want to use Yum, RPM, or
DNF. For Open Suse, you'll want to use Zypper, and for Arch, Pacman or PacAUR I'm guessing.

Install Python3
Open a terminal (CLI) window, and do the following: First make sure you have the lates package
updates.

sudo apt update

Enter your super user password if prompted. If you're running Debian as root, you won't need the
sudo part, just leave it off.

Next, we'll install python3 with:

sudo apt install python3 -y

After that completes, we'll install pip3 with:

sudo apt install python3-pip

Now that those are installed, we need to install Glances and Bottle (which will allow Glances to run
as a web server).

Install Glances and Bottle
Use the following pip3 commands to install Glances and Bottle:

pip3 install bottle

If you get an error, try it with sudo like:

sudo pip3 install bottle

Now, do the same, but for Glances:

pip3 install glances

and again, if you needed sudo for Bottle, you'll need it for Glances, so do:

sudo pip3 install glances

Once those are finished installing, you can test that glances works by running the command:

glances

in your terminal. You should see a page full of information about your system show up.

You can stop glacnes with the CTRL + C key combination.

Next, you can make sure Bottle is working and run glances in web-server mode with the command:

glances -w

You'll see some output on the terminal, and should have something like Glances Web User Interface

started on http://0.0.0.0:61208/ on the screen.

Now, open a browser and go to

http://localhost:61208

or use the ip address of the machine you are working on:

http://192.168.1.x:61208

of course, using the correct private IP of the machine.

You should see a nice view of Glances, almos exactly as it looked in the terminal.

Now you can stop that process in the terminal with CTRL + C, an dwe need to turn that into a
service that will run automatically, even after we reboot the machine.

http://0.0.0.0:61208/

Create the Glances Service
We'll be adding a new file to /etc/systemd/system/ called glancesweb.service

So in a terminal window do the following:

sudo nano /etc/systemd/system/glancesweb.service

This will open a text editor in your terminal, and it should be empty.

Use the following code to start off:

If you are running as root, this should work, but we need to make sure glances is running from the
path we expect, which is currently /usr/local/bin/ . To find this out, save the file with CTRL + O, then
press Enter to confirm, then use CTRL + X to exit the nano editor.

In the terminal, do the command:

which glances

You should get output like:

/usr/local/bin/glances

but, if you aren't running as root during the install you may get something like:

/home/<your usre>/.local/bin/glances

Whatever you get, highlight it, right click, select copy, and then we'll open the nano editor back up
with:

[Unit]
Description = Glances in Web Server Mode
After = network.target

[Service]
ExecStart = /usr/local/bin/glances -w -t 5

[Install]
WantedBy = multi-user.target

sudo nano /etc/systemd/sysetm/glancesweb.service

On that line starting with ExecStart , make sure to remove the path (if it's different from what you
got with the which glances command, and replace it with what you copied.

In my case, I would make it look like

Now, because it's running from my home directory, I need to add one more line just below this one.
 If you are running from the /usr/local/bin directory, you do not need this line.

User = <your user>

so for me, the file looks like:

Yours should have your username of course.

Now, save the file with CTRL + O, then press Enter to confirm, and use CTRL + X to exit.

Next, we need to start and enable our service.

We do the following commands to do this:

sudo systemctl start glances.service

sudo systemctl enable glances.service

As long as you don't get any errors after each of those, you can check the status with

sudo systemctl status glances

You should see a row in the output near the top that shows active . If you see failed , you need to
recheck the glancesweb.service file, and make sure you have everything correct.

Now that it's running, you can again go to the ip address of:

[Service]
ExecStart = /home/<your usre>/.local/bin/glances -w -t 5

[Service]
ExecStart = /home/brian/.local/bin/glances -w -t 5
User = brian

http://<local ip>:61208

and view your glances in the web browser. As long as it shows up, we are ready to move forward
with getting some widgets in Dashy.

Adding Widgets to Dashy
At the time of writing, Dashy widgets can only be added from the configuration file, and not
through the UI / GUI editor. I believe it's being worked on, but the config file isn't hard to modify, so
let's jump into it.

If you're running Dashy in the way I showed in my video previously, you'll want to get on the server
it runs on, and navigate to the foldeer where the configuration file is located. For me it's in a folder
in my home directory called docker/dashy/public .

So I do

cd ~/docker/dashy/public

Now if you do

ls

you should see a file called conf.yml . This is the configuration file you want.

First, let's copy conf.yml to a new backup version, just in case we mess something up, it's easy to
bring it back to the way it is right now.

cp conf.yml conf.bak.yml

Now, let's modify our conf.yml file to add a widget.

nano conf.yml

You may need to use sudo . If you see a red bar at the bottom of your nano editor, you need to exit
with CTRL + X, and re-open it with sudo .

sudo nano conf.yml

Now, move down through the file until you see the first section called sections .

Just below that line, create a new line. Keep in mind that yaml or .yml is very space specific. So
mind your spacing.

Let's add a new Widget section for our server. My server's name is "Aria".

Next, we'll add a widgets indicator, and our first widget. We'll add the glances cpu usage widget.

At this point, you can save with CTRL + O, and then go to your browser and open your Dashy
dashboard, to see your new widget and ensure it works. You need to, of course, replace the IP in
the example above with the IP address of your server that you installed glances on. You may have
to refresh Dashy if you're already running it, and you may have to tell firefox to release the cache
then refresh (firefox is great, but it really hates to refresh and show new sutff).

Let's add another widget. Continuing in the nano editor from where we are. we'll add:

You can again save, and take a look at your Dashy dashboard to see the new widget. You can now
just go crazy adding widgets to Dashy using this same method.

sections:
 - name: Aria Info

sections:
 - name: Aria Info
 widgets:
 - type: gl-current-cpu
 options:
 hostname: http:192.168.10.209:61208

sections:
 - name: Aria Info
 widgets:
 - type: gl-current-cpu
 options:
 hostname: http:192.168.10.209:61208
 - type: gl-current-mem
 options:
 hostname: http:192.168.10.209:61208

Let's say you want to add two servers data. It's now hard. We just create another section for our
next server like so:

Notice the different name and ip address in our second section. Also, understand that the glances /
bottle install and service setup, needs to be done on each server / machine you want this
information from.

Now you can turn Dashy into an incrdible tool for all kinds of great information.

Support me on Patreon
Support my Channel and ongoing efforts through Patreon:
https://www.patreon.com/bePatron?u=234177

sections:
 - name: Aria Info
 widgets:
 - type: gl-current-cpu
 options:
 hostname: http:192.168.10.209:61208
 - type: gl-current-mem
 options:
 hostname: http:192.168.10.209:61208
 - name: Liratta Info
 widgets:
 - type: gl-current-cpu
 options:
 hostname: http:192.168.10.152:61208
 - type: gl-current-mem
 options:
 hostname: http:192.168.10.152:61208

https://www.patreon.com/bePatron?u=234177

Heimdall

Heimdall

Install Heimdall, a beaiful
shortcut and informational
dashboard

https://www.youtube.com/embed/qFqUXN0jxMQ

I've shown you the Homer Dash in the past, and it is a termendousely great dashboard. The only
downside (if you can call it that) is having to change a configuration file in order to add new cards,
modify existing cards, or remove cards.

That's where Heimdall really stands out to me. It has a very nice Graphical User Interface, and
beyond getting it installed and ready to go in a docker-compose (you can use the Portainer GUI to
install Heimdall BTW) you work completely in the web browser for setup and configuration. It's
really a great experience from the perspecitve of making a simple, easy to use dashboard for the
average person. The other really great feature is the ability to have multiple users and separated
dashboards for each user when desired.

Today we'll install Heimdall using Docker-CE and Docker-Compose. After that, check out the video
above for the quick GUI overview.

What you'll need
A server or machine you want to run Heimdall from.
Docker-CE and Docker-compose installed and ready (alternatively you can use Portainer if
you have it already).

https://www.youtube.com/embed/qFqUXN0jxMQ

About 30 minutes of your time (less if you just follow this guide and then jump into the UI
on your own).

Installation
If you don't already have Docker and Docker-Compose installed, you'll want to get those setup first.

I have a script out on GitHub that will install Docker-CE, Docker-Compose, NGinX Proxy Manager,
and Portainer-CE (all optional) for you.

Just open a terminal and run the following command to pull down the script to your local machine:

wget https://gitlab.com/bmcgonag/docker_installs/-/raw/main/install_docker_nproxyman.sh

This will download a script called "install_docker_nproxyman.sh" to your current directory.

Change the permissions on the file to allow it to run with:

chmod +x install_docker_nproxyman.sh

and then run the script with:

./install_docker_nproxyman.sh

You'll be prompted to identify your OS/Distro. If you run an OS based on one of the options, simply
select that option.

Next, you'll be asked if you want to install Docker, Docker-CE, NGinX Proxy Manager, and / or
Portainer-CE.

Feel free to install them all, or just Docker and Docker-Compose. that's completely up to you.

Installing Heimdall
Now, we want to create a directory for Heimdall.

mkdir heimdall

and then move into that directory:

cd heimdall

Next we need to create a file calleed "docker-compose.yml":

nano docker-compose.yml

Now we need to paste the following into the file we've just opened.

You'll want to change a couple of things in the file you just pasted.

1. change the TZ (timezone) if needed, to be the correct timezone for your location.
2. change the PUID and PGID to be your user's group and user IDs. You can find them in the

terminal by typing the command id .
3. On the left side of the colon ":" in the volume section, make sure to set the path to where

you have created the "heimdall" folder above.
4. On the left side of the colon ":" in the ports section, make sure to set a port that is not in

use on your host. If 8080 is free, then just use it.

Now, save the file with CTRL + O, then Enter to confirm, and exit the nano editor with CTRL + X.

Now, you just need to run the docker-compose command to bring up your dashboard.

docker-compose up -d

Give it time to download the image, and start the container. When you see "done" in the terminal,
give it another 10 seconds or so, and then in your web browser of choice, go to the ip address of
the host machine, and the port you set above.

version: "2.1"
services:
 heimdall:
 image: lscr.io/linuxserver/heimdall
 container_name: heimdall
 environment:
 - PUID=1000
 - PGID=1000
 - TZ=America/Chicago
 volumes:
 - /home/<your-user>/heimdall/config:/config
 ports:
 - 8080:80
 restart: unless-stopped

In my case I went to:

https://192.168.10.26:8280

From there, you can go through the settings, setup new users, setup your preferred default search
provider, and setup application shortcuts.

Enjoy!

Dashy

Dashy

Dashy - Powerful,
Informative, Configurable
Self-Hosting Dashboard

https://www.youtube.com/embed/QsQUzutGarA

Along the same lines as Homer, Heimdall, and Monitorr; I wanted to continue our look into personal
web dashboards. I've posted about those few, and talked about others as well.

Sometimes the question comes up, and it's a valid one, "Why would I use this over the bookmarks
tooldbar in (Chrome, firfox, etc)?"

The thing these dashboards give you, is a much lovelier UI, but also many of them provide some
extra information. Heimdall and Homer can be setup to provide details about Pi-hole, qBittorrent,
Sonarr, etc. Dashy gives you up / down indications at a glance, and as it's an active project, will
hopefully get some more status features moving forward.

The one thing I really like about Dashy is it's various methods for configuration. You can configure
it through the terminal directly in the configuration file, or you can go through the User Interface
with a nicely laid out configuration tool, an interactive (WYSIWYG) configuration editor, and / or just
update the .yml right there in the browser window.

For me, a person who updates their dashboard semi-regularly, it's a nice convenience to not have
to leave the Web User Interface and SSH into another machine to make changes / updates.

What You'll Need

https://www.youtube.com/embed/QsQUzutGarA

Docker-CE
Docker-Compose
(Optional) NGinX Proxy Manager
(Optional) Portainer-CE
About 10 minutes of your time (not including adding items to the Dashboard)

Installation
Check out this video on installing Docker, Docker-Compose, NGinX Proxy Manager, and Portainer-
CE with a single script in under 5 minutes.

For organizational purposes, you should run your docker containers (docker or docker-compose)
from a folder called docker. Inside that folder you should create sub-folders for each application
you run. So, inside the "docker" folder, we'll create a new folder called "dashy".

cd docker

mkdir dashy

cd dashy

Now, we want to make a couple of sub-folders inside of our new "dashy" folder. They'll be called
"public" and "icons".

mkdir {public,icons}

NOTE: You can create your "dashy" sub-folder, and your "public" and "icons" sub-folders in a single
command with:

mkdir -p dashy/{public,icons}

You can do a quick listing of your "dashy" directory with the command:

ls

Mkae sure both folders show up.

Now we'll create a simple text file called "docker-run.txt"

nano docker-run.txt

https://www.youtube.com/watch?v=TdEKVPWbC58
https://www.youtube.com/watch?v=TdEKVPWbC58

Inside of the file, you'll want to paste the code block below, and then we'll make any necessary
modifications for your system.

Now, we'll make a couple of modifications as needed. First, if your host machine has port 8290 in
use, change the port on the left side of the colon ':' to one that is not in use on your host.

Next, change the portion in the two volume mappings with '< >' around it to be the proper path of
your docker folder.

In my case I have

/home/brian/docker/dashy/public/conf.yml

and

/home/brian/docker/dashy/public/icons

Again, only change the left side of the colon.

Now, save the file with CTRL+O, then press Enter to confirm, and exit the nano editor with CTRL+X.

Our Initial Configuration File
For us to start with a fairly clean Dashy install, we'll want to use a fairly small conf.yml file.

So make a conf.yml text file in the public sub-folder with the command:

nano public/conf.yml

Inside this file, you'll paste the following code block:

docker run -d \
 -p 8295:80 \
 --volume </path/to/your>/docker/dashy/public/conf.yml:/app/public/conf.yml \
 --volume </path/to/your>/docker/dashy/icons:/app/public/item-icons/icons \
 --name dashy \
 --restart=unless-stopped \
 lissy93/dashy:latest

Now, we'll save this file with CTRL+O, press Enter to confirm, and use CTRL+X to exit the nano
editor.

Authentication
If you want to add some Authentication on top of Dashy, I highly recommend Authelia, but there is
a built in authentication piece as well.

You can modify the above block as follows:

appConfig:
 theme: colorful
 layout: auto
 iconSize: medium
 language: en
pageInfo:
 title: Home Lab
 description: Welcome to your Home Lab!
 navLinks:
 - title: GitHub
 path: https://github.com/Lissy93/dashy
 - title: Documentation
 path: https://dashy.to/docs
 footerText: ''
sections:
 - name: Starter Only
 icon: fas fa-server
 items:
 - title: Google
 description: Search
 url: https://google.com

appConfig:
 theme: colorful
 layout: auto
 iconSize: medium
 language: en
 auth:

Getting Icons for your Dashboard
We'll be pulling a really great github repo down that has tons of icons for self-hosted applicationis,
adn this just really pulls together any dashboard, regardless of which one you use.

So, move into the "icons" sub-folder we create earlier, and use the command:

git clone https://github.com/walkxcode/dashboard-icons.git

Clone the github repository.

Once pulled down, do an ls and you'll see a new folder called "dashboard-icons". Inside that you'll
find several folders, but you'll likely be most interested in the "png" folder, which holds the png
files for all of the icons in the repository.

Now, move back one step into your "dashy" folder with

cd ..

 users:
 - user: your-preferred-username
 hash: hash-of-a-password-you-choose-using-sha256-hashing
 type: admin
pageInfo:
 title: Home Lab
 description: Welcome to your Home Lab!
 navLinks:
 - title: GitHub
 path: https://github.com/Lissy93/dashy
 - title: Documentation
 path: https://dashy.to/docs
 footerText: ''
sections:
 - name: Starter Only
 icon: fas fa-server
 items:
 - title: Google
 description: Search
 url: https://google.com

https://github.com/walkxcode/dashboard-icons.git

Pull and Run Dashy
Let's get our docker run command by running the command:

cat docker-run.txt

This will list out your docker-run command in the terminal. Highlight it, copy it, and paste it into
the waiting terminal prompt. Press Enter, and docker will pull down the latest dashy image, and
start it running using our starter conf.yml file.

Once it runs, give it about 1 minute, then go to your browser and enter the host machine's IP
address, and enter the port you set on the left side of the port mapping in the docker run
command.

For instance, my host is at 192.168.10.26, and I used port 8295, so I went to

http://192.168.10.26:8295

If all went according to plan, you should see your Dashy starter page load up.

Now you can start configuring, theming, and making your own special dashy dashboard page.
 Check out the video for more on how to navigate the Dashy User Interface, and how to configure
your ultimate dashboard!

Homepage

Homepage

Install Homepage

https://www.youtube.com/embed/3Ux7zfCCM1A

Self hosted dashboards are incredibly useful for a myriad of reasons. They provide quick access to
all of your self hosted services, quick links to bookmarks of your most used online sites and
services, and can offer some very useful monitoring information about your services at a glance.

Homepage is no different in this regard, and is a fast loading piece of software to boot. One of the
nicest features is that as you save changes to the configuration file, the page reloads quickly to
show you how your changes have affected the page layout. This is something I've struggled with in
Dashy since I started using it, having to work around caching in the browser by opening the dev
tools and refreshing the page multiple times.

What you'll need
Docker and Docker Compose
The most general familiarity with how to open a terminal emulator (command prompt)
About 10 minutes of your time

Installation
Installation of Docker and Docker Compose via a Simple
Script
You can easily install Docker-CE, Docker-Compose, Portainer-CE, and NGinX Proxy manager by
using this quick install script I created and maintain on Github. Just use the command:

wget https://gitlab.com/bmcgonag/docker_installs/-/raw/main/install_docker_nproxyman.sh

https://www.youtube.com/embed/3Ux7zfCCM1A
https://gitlab.com/bmcgonag/docker_installs/-/raw/main/install_docker_nproxyman.sh

To download the script to your desired host.

Change the permissions to make the script executable:

chmod +x ./install_docker_nproxyman.sh

and then run the script with the command:

./install_docker_nproxyman.sh

When run, the script will prompt you to select your host operating system, then will ask you which
bits of software you want to install.

Simply enter 'y' for each thing you want to install.

At some point, you may be asked for your super user (sudo) password as well.

Allow the script to complete installation.

At this point, you might want to log out and back in, as this will allow you to use the docker and
docker-compose commands without the need of sudo in front of them.

Installing Homepage
Now that we have docker and docker-compose installed, let's get ready to install Homepage. First
we'll setup our desired folder structure. I put all of my docker applications inside of a top level
(parent) folder called "docker". This makes it very easy to run a script that will backup all of my
docker applications and compress them into a zipped format.

mkdir -p docker/homepage

This command will create the docker folder if it does not already exist, and will use the existing one
if it does. Then it will create the homepage folder inside of that parent docker folder.

Now we'll move into the homepage folder and create a new file called docker-compose.yml.

cd docker/homepage

nano docker-compose.yml

In this case, I'm using the nano text editor directly in the terminal, but you can use any text editor
you are more comfortable with. Make sure the editor is not a rich-text editor by default, as the
yaml we will be adding is space dependent, and can be messed up with hidden rtf characters.

Copy the yaml code from the block below, and paste it into your new docker-compose.yml
document.

The one change you may want / need to make is to the port mapping (8921:3000). You can always
change the left side port in a docker port mapping, just not the right side. The left side of the
mapping is how you'll access the application once it's up and running. You simply want to make
sure that it's not trying to use a port already in use on the host system. In this case I changed
3000 (the original left side port number) to 8921 in order to avoid a very common port used in
nodejs based applications. As long as port 8921 is free on your host system, you won't need to
change it.

Save the docker-compose.yml document with CTRL + O, then press Enter to confirm, and exit the
nano editor with CTRL + X.

Run the Application
Now we are ready to run our application for the first time. We'll use the following command to run
it:

docker compose up -d

version: "3.3"
services:
 homepage:
 image: ghcr.io/benphelps/homepage:latest
 container_name: homepage
 ports:
 - 8921:3000
 volumes:
 - ./config:/app/config # Make sure your local config directory exists
 - /var/run/docker.sock:/var/run/docker.sock:ro # (optional) For docker integrations
 # user: 1000:1000 optional, not compatibile with direct socket see
https://gethomepage.dev/en/configs/docker/#using-socket-directly
 restart: unless-stopped

If you have an older version of docker-compose, you may need to put a hyphen (-) between the
words docker and compose, like this:

docker-compose up -d

NOTE: the un-hyphenated version is the newer version of docker-compose.

Allow docker to pull down the latest image of Homepage, and start up the container. When it's
complete you'll be back at a normal terminal prompt.

Now go to your favorite modern browser and enter the IP address of your host machine (if you're
running the application on the physical machine you're working on, you can use
http://localhost:8921) and the port 8921 (unless you changed the left side of the port mapping to
another number, in which case you should use that port number. In my case, I went to:

http://192.168.10.154:8921

You should now be presented with the default Homepage layout screen. After loading the web
page for the first time, you'll find that back in the terminal you now have multiple yaml files in the
"config" folder. These are initially created after you load the page for the first time.

You can now start modifying the yaml files to customize your Homepage as you please. I highly
recommend reading the documentation on the configuration options, as there are many, and you
can get very detailed on what can be displayed.

https://gethomepage.dev/en/installation/

For a solid starting spot, I recommend opening the "services.yaml" and "bookmarks.yaml" files and
playing with those a bit. You can add multiple service sections under each group, and you can add
more groups as well in the services.yaml file. The same goes for the bookmarks.yaml file.

Make sure to check out the video for more detail on how to do that as well.

Support My Channel and Content
Support my Channel and ongoing efforts through Patreon:
https://www.patreon.com/awesomeopensource

http://localhost:8921
http://192.168.10.154:8921
https://gethomepage.dev/en/installation/

