
https://www.youtube.com/embed/zEBaXAu8zE0

For this project, you'll need / want a server outside of your network that has a fixed public IPv4
address. For this, you can use services like Digital Ocean, RackNerd, Linode, Vultr, and so many
more. I have affiliate links for Digital Ocean and Racknerd, so if you use my links, you help support
this content, but feel free to use any service you prefer.

sudo apt update && sudo apt upgrade -y

sudo dnf update -y

Generally, when you setup a new server, the VPS (Virtual Private Server) service sets up a default
"root" user for you. It's considered unsafe to do everything as "root", so let's setup a non-root user
who has super user (sudo) privileges.

adduser <username>

You'll be prompted to enter and confirm a password for this user. You'll also be asked for some
user information like Name, etc, but this is not required information. At the end, confirm the
entries, and you'll have your new user.

Next, we need to add the user to the super user group.

usermod -aG sudo <username>

usermod -aG wheel <username>

Install and Configure Pangolin

Setup a Server

Install updates to our Server

Ubuntu / Debian

RedHat / CentOS / Fedora / Alma / Rocky

Add a non-root / sudo user on the server

Ubuntu / Debian

RedHat / CentOS / Fedora / Alma / Rocky

https://www.youtube.com/embed/zEBaXAu8zE0

Now, you can log out of the system, and log back in as your new non-root super user.

Pangoling relies on two DNS records in order to make it easy to route service traffic properly. The
first is a record to access the Pangolin Admin Dashboard. We will create this as a specific
subdomain of our main (base) domain.

In my case, I own the domain sysmainit.com , and through the domain registrar's dashboard I can
setup new DNS records for this domain. You should learn how to do this for the domain you own.

I will add a subdomain specifically for accessing the Pangolin admin console (e.g.
pang.yourgreatdomain.com), and wildcard subdomain, so all other subdomain requests are
handled by the reverse proxy (e.g. *.yourgreatdomian.com).

DNS Record Type Sub-domain IP address

A pang 142.142.254.12

A * 142.142.254.12

With the above information we tell our domain, that the URL "https://pang.yourgreatdomain.com
should point to the public IPv4 address 142.142.254.12, and that any other subdomain (such as
https://jellyfin.yourgreatdomain.com) should also point to 142.142.254.12. Although these both
point to the same IP, the Pangolin setup will make sure they do very different things.

1. Use the Pangolin quick Installer to install and run Docker, Docker compose, and Pnagolin
all at once with a single script.

You'll need the following information when you run the installer

1. Base Domain (e.g. yourgreatdomain.com)
2. subdomain for accessing the Pnagolin admin console (e.g. pang, or pangolin, or pang-

admin, etc)
3. A valid email address for the LetsEncrypt setup.
4. An email to use as the admin user (can be the same as above).
5. A Password for the admin user.
6. A determination on whether you want to install CrowdSec for added security.
7. (Optional) SMTP (Email) server and credential information for Email setup.

Setup DNS Records

Install the Pangolin Server Software

Once complete, you'll be able to access the Pangolin admin console at the FQDN you made for it
(e.g. https://pang.yourgreatdomain.com). Login using the admin username (email) and password
you created while running the installer.

Before you setup your first site (Pangolin node), you'll need to have a server (VM, Incus, LXD, LXC
container, or Docker Container) ready to go inside your local network. You can use a system you
already have services running on, or a system where you already have Docker and Docker
Compose running, or setup a small Incus Virtual Machine (VM) running Ubuntu 24.04 server.

If you're setting up a new server / VM / Container, you should run through the same non-root user
with sudo privilege setup as we did for the public facing server. Then install the Newt client
software.

You can setup a machine where you're already running services as your ingress point, or you can
setup a server, VM, or Container (incus, LXC, LXD, or Docker) to act as the ingress server.

I setup an Incus Container running a very tiny Ubuntu 24.04 server install, and it works perfectly.

For this portion of the setup, we are going to setup a special Wireguard VPN client called Newt.
This client is specifically created to act as the ingress point of a secure tunnel running over
Wireguard.

I used the amd64 binary on my ingress server, but feel free to use the one that fits for your
architecture. Additionally, you can opt to use a Docker container, but you'll need to check the Newt
documentation for the specifics on how to set that up.

Now that we know where we want to run Newt, we can start creating a site in our Pangolin Admin
server dashboard.

1. On the sites page, click 'Add Site +'.
2. Give your site (node) a recognizable name.
3. Select the 'Newt Tunnel' option (it should be selected by default).
4. Copy the credentials that are auto-generated for 'Newt Endpoint', 'Newt ID', and 'Newt

Secret Key'.
5. Check the box to confirm you have securely saved the site credentials.
6. Select the Operating System / Kernel running on your chosen ingress node. In my case I

selected 'Linux'.
7. Select the architecture type for the chosen ingress node. In my case it is 'amd64'.
8. Copy the commands provided, and get ready to paste them into your ingress node's

terminal.
9. Click 'Create Site'.

10. Paste the copied commands into the terminal for your ingress node, and press Enter.

Ingress Point Setup into your Network

11. Allow the install to work, and you should see Newt start up and start pinging.

Now, we need to create a system service so Newt will run automatically, in the background, and
even when we reboot the node.

In the node's terminal, we'll create a file called 'newt.service'.

nano newt.service

Now, copy the code block below, and paste it into the file you just created.

Now, we need to add the startup command for newt with your node's id, secret key, and endpoint.
This was the second part of the command we copied from your Pangolin dashboard.

Save the 'newt.service' file with CTRL + O, press Enter to confirm, and exit the editor with CTRL +
X.

Now use the up arrow key on your keyboard to view the previously entered commands.

When you see the long command you pasted earlier, copy the last half of the command starting
with ./newt .

It should look something like:

/newt --id s0m3l0n6rAnD0MS7r1n6 --secret aN3venL0n6erRAnD0mStr1n6ofchARAC73r5 --endpoint
https://proxy.yourgreatdomain.com

It's important to click the 'Create Site' button before starting the Newt application, or it will
give an error that it can't find the endpoint or connect. If you see that error, simply return to
your Pangolin dashboard, and finish creating your site by clicking the button. Newt will try
again in 10 seconds, and should connect.

[Unit]

Description=Newt VPN Client

After=network.target

[Service]

ExecStart=

Restart=always

User=root

[Install]

WantedBy=multi-user.target

Re-open the 'newt.service' file with

nano newt.service

and paste this line in after the equal '=' sign on the line with "ExecStart=". Modify the beginning of
the command by removing the ./ and adding /usr/local/bin/ to it. So the whole line should look
like:

ExecStart=/usr/local/bin/newt --id s0m3l0n6rAnD0MS7r1n6 --secret
aN3venL0n6erRAnD0mStr1n6ofchARAC73r5 --endpoint https://proxy.yourgreatdomain.com

Save the file again with CTRL + O, then press Enter to confirm, and exit the file with CTRL + X.

Now we need to move our "newt" application to the /usr/local/bin location with:

sudo mv newt /usr/local/bin/

Next, we need to move the service file we just created to /etc/systemd/system with

sudo mv newt.service /etc/systemd/system/

Finally, we'll start and enable our newt service with the commands:

sudo systemctl start newt.service

and

sudo systemctl enable newt.service

We can check the newt.service status to ensure it's active and running with:

sudo systemctl status newt.service

You should see that it's active and that it is running ping checks in the logging section. This
indicates that the newt service is running, and that you now have a tunnel from your ingress node
out to your Pangolin server.

You are not restricted to a single site (node) with Pangolin. you can have multiple nodes, and can
have multiple organizations to help you create tunnels for all your services regardless of where
they are hosted.

Now we want to create access to our services (called Resources in Pangolin).

1. Click on 'Resources' in the left navigation.

Service (Resource) Setup on your LAN

2. Click the 'Add Resource +' button near the upper right of the view.
3. Give your Resource (site) a recognizable name. For instance if you are setting access to

Jellyfin, then name it Jellyfin.
4. Next, you can choose from any nodes you've setup for the organization in the 'Site' drop

down. You need to choose a node which will have local (LAN) access to the service, or
localhost access if both the Newt node and service are running on the same machine.

5. For resource type, you can choose 'HTTP Resource'.
6. In the HTTP Settings section, give your resource a sub-domain. For instance, with Jellyfin,

you may just want to use 'jellyfin', or maybe just 'jf'. It's up to you.
7. Make sure the proper base domain (e.g. yourgreatdomain.com) is selected in the drop

down.
8. Click 'Create Resource'.
9. On the next screen, choose the 'Method' (http or https usually).

10. Then enter the local IPv4 address of the resource (e.g. 192.168.1.24)
11. Finally, enter the port the service runs on (e.g. 8096 for Jellyfin, or 8123 for Home

Assistant, etc).
12. Click the 'Add Target' button.
13. Then click the 'Save Target' button.
14. You should now be able to access your application (resource) over the internet by using

the FQDN (fully qualified domain name) you've setup for it.

If you're like me, then you may own a few domains, and want to use Pangolin to act as a tunnel for
all of them. This is 100% possible with Pangolin, but we need to make a quick edit to our Pangolin
server.

Let's say you want to use Pangolin to proxy traffic for your domains yourgreatdomain.com,
domainsrock.com and opensourcerocks.org. You need to do a few things to make this successful.

You need to create a wildcard (*) A-Record for each domain, and make sure it points to your
Pangolin Server's public IPv4 address. If your server's public address is 212.145.66.21 then you'd
want three A records.

You still need the single DNS A Record which points your subdomain to the dashboard access for
Pangolin:

Multiple Domains in Pangolin

Create DNS A Wildcard (*) Records

Type Subdomain Base Domain IPv4

A * .yourgreatdomain.com 212.145.66.21

A * .domainsrock.com 212.145.66.21

A * .opensourcerocks.org 212.145.66.21

proxy.yourgreatdomain.com -> 212.145.66.21

This is still the FQDN you use to access the Pangolin admin dashboard.

SSH or access your Pangolin server, and find the files that the Pangolin install script created. You
should see something like this:

We need to go into the "config" folder,

cd config

Now we need to open the "config.yml" file and make some additions.

sudo nano config.yml

You'll see something that looks like the below:

Update the Pangolin Server Config

$~ ls

config docker-compose.yml installer

$~

To see all available options, please visit the docs:

https://docs.fossorial.io/Pangolin/Configuration/config

app:

 dashboard_url: "https://proxy.yourgreatdomain.com"

 log_level: "info"

 save_logs: false

domains:

 domain1:

 base_domain: "yourgreatdomain.com"

 cert_resolver: "letsencrypt"

server:

 external_port: 3000

 internal_port: 3001

 next_port: 3002

 internal_hostname: "proxy"

 session_cookie_name: "p_session_token"

 resource_access_token_param: "p_token"

 resource_access_token_headers:

 id: "P-Access-Token-Id"

 token: "P-Access-Token"

 resource_session_request_param: "p_session_request"

 secret: somesuperlongcharacterstringoflength

 cors:

 origins: ["https://proxy.yourgreatdomain.com"]

 methods: ["GET", "POST", "PUT", "DELETE", "PATCH"]

 allowed_headers: ["X-CSRF-Token", "Content-Type"]

 credentials: false

traefik:

 cert_resolver: "letsencrypt"

 http_entrypoint: "web"

 https_entrypoint: "websecure"

gerbil:

 start_port: 51820

 base_endpoint: "proxy.yourgreatdomain.com"

 use_subdomain: false

 block_size: 24

 site_block_size: 30

 subnet_group: 100.89.240.0/20

rate_limits:

 global:

 window_minutes: 1

 max_requests: 500

users:

 server_admin:

 email: "admin@yourgreatdomain.com"

 password: "a-server-admin-password"

flags:

 require_email_verification: false

 disable_signup_without_invite: true

 disable_user_create_org: false

 allow_raw_resources: true

 allow_base_domain_resources: true

In this file, we want to add more domains subsections. Under the main 'domains' section, we'll
create a new line, then add the appropriate spaces.

Looking at the modified 'config.yml' file below, you'll notice I've added two more domain
subsections to the yaml file. They look like this within the 'domains:' section.

First, you add a new domain count subsection (e.g. 'domain2', 'domain3', and so on). Next, under
each subsection we add the item for the 'base_domain', and the associated 'cert_resolver'. In most
cases, you'll want the 'cert_resolver' to be 'letsencrypt'.

Add the appropriate subsections for your additional domains into the 'config.yml' file.

Remember, YAML is space dependent. We want to use the proper number of spaces so each
subsection lines up with the same indentation level as the subsection above it.

 domain2:

 base_domain: "domainsrock.com"

 cert_resolver: "letsencrypt"

 domain3:

 base_domain: "opensourcerocks.org"

 cert_resolver: "letsencrypt"

To see all available options, please visit the docs:

https://docs.fossorial.io/Pangolin/Configuration/config

app:

 dashboard_url: "https://proxy.yourgreatdomain.com"

 log_level: "info"

 save_logs: false

domains:

 domain1:

 base_domain: "yourgreatdomain.com"

 cert_resolver: "letsencrypt"

 domain2:

 base_domain: "domainsrock.com"

 cert_resolver: "letsencrypt"

 domain3:

 base_domain: "opensourcerocks.org"

 cert_resolver: "letsencrypt"

server:

 external_port: 3000

 internal_port: 3001

 next_port: 3002

 internal_hostname: "proxy"

 session_cookie_name: "p_session_token"

 resource_access_token_param: "p_token"

 resource_access_token_headers:

 id: "P-Access-Token-Id"

 token: "P-Access-Token"

 resource_session_request_param: "p_session_request"

 secret: somesuperlongcharacterstringoflength

 cors:

 origins: ["https://proxy.yourgreatdomain.com"]

 methods: ["GET", "POST", "PUT", "DELETE", "PATCH"]

 allowed_headers: ["X-CSRF-Token", "Content-Type"]

 credentials: false

traefik:

 cert_resolver: "letsencrypt"

 http_entrypoint: "web"

 https_entrypoint: "websecure"

gerbil:

 start_port: 51820

 base_endpoint: "proxy.yourgreatdomain.com"

 use_subdomain: false

 block_size: 24

 site_block_size: 30

 subnet_group: 100.89.240.0/20

rate_limits:

 global:

 window_minutes: 1

 max_requests: 500

users:

 server_admin:

 email: "admin@yourgreatdomain.com"

 password: "a-server-admin-password"

Once added, save the file with CTRL + O, then press Enter to confirm, and exit the nano editor with
CTRL + X.

Now we need to restart the Pangolin server with the commands:

docker compose down

Once that completes, enter

docker compose up -d

Wait for the start up to complete, return to your Pangolin dashboard in the browser, and refresh it.
Now when you go to add a resource, the base_domain drop-down field should list all of your added
domains as options.

flags:

 require_email_verification: false

 disable_signup_without_invite: true

 disable_user_create_org: false

 allow_raw_resources: true

 allow_base_domain_resources: true

Revision #3
Created 13 June 2025 20:36:57 by Brian McGonagill
Updated 13 June 2025 23:49:37 by Brian McGonagill

