
SelfHosted Gateway

https://www.youtube.com/embed/VCH8-XOikQc

When you self host, one of the primary goals is to have your services available, yet secure. Many
of us run into hindrances to having publicly available self hosted services because of the way our
ISPs handle oru internet access.

They block ports like 80 and 443, and common email ports as well. They give you ever changing,
dynamic DNS addresses so you can't depend on the IP routing you need. They put you behind two
routers, often called "double NAT" or "cg-NAT". All things that make their life easier, but make our
self hosted aspirations much more difficult to achieve.

Fortunately, there are teams like the FractalNetworksCo who build amazing little open source tools
like the SelfHosted-Gateway. This great little piece of software can really improve your ability to
self host your applications, and access them through a fully qualified domain name (FQDN) without
much hassle at all. So today, we go through the setup of this application.

What You'll Need
An external server (VPS) to tunnel to

This can be something like a Digital Ocean droplet, a Linode server, or an Oracle Free Tier server.

An Internal Server where you host your applications (using Docker-Compose will be best in
this case).
Docker-CE and Docker-Compose installed on both servers.
The SelfHosted Gateway Software cloned to the external and internal server.
Make - installed on both servers.
SSH access from the internal server to the external server (preferrably setup with SSH
Keys vs. password).
About 20 minutes of your time.

Installation

https://www.youtube.com/embed/VCH8-XOikQc
https://github.com/fractalnetworksco/selfhosted-gateway

Installing Docker and Docker-Compose on
your Servers
If you already have Docker and Docker-Compose installed, feel free to skip down to the next
section.

You may want to install some pre-requisite softwre as well:

Debian / Ubuntu

sudo apt install git curl wget

Fedora / Redhat

dnf install git curl wget

Arch

sudo pacman -Sy git curl wget

You can easily install Docker-CE, Docker-Compose, Portainer-CE, and NGinX Proxy manager by
using this quick install script I created and maintain on Github. Just use the command:

wget https://gitlab.com/bmcgonag/docker_installs/-/raw/main/install_docker_nproxyman.sh

To download the script to your desired host.

Change the permissios to make the script executable:

chmod +x ./install_docker_nproxyman.sh

and then run the script with the command:

./install_docker_nproxyman.sh

When run, the script will prompt you to select your host operating system, then will ask you which
bits of software you want to install.

Simply enter 'y' for each thing you want to install.

For instance, you may want to answer 'y' to NGinX Proxy Manager, and Portainer-CE if you don't
already use these in your system.

At some point, you'll be asked for your super user (sudo) password as well.

Allow the script to complete installation.

https://gitlab.com/bmcgonag/docker_installs/-/raw/main/install_docker_nproxyman.sh

At this point, you might want to log out and back in, as this will allow you to use the docker and
docker-compose commands without the need of sudo in front of them.

Installing SelfHosted Gateway on the
Cloud (external) Server
Create a new server on a VPS, then setup a subdomain with an A record pointing to it.

If this will be your main gateway for all apps in your home network, then make it a domain using a
domain name registrar like Hover, GoDaddy, Cloudlfare, NameCheap, etc. You can then point
subdomains to the A record of the main domain using a CNAME record, or you can make a wildcard
domain using *.yourdomain.com with an A Record pointing to the IP Address (public) of yoru VPS.

1. Update the server to ensure you have the latest updates available.

2. Add non-root (sudo) user

On ubuntu based servers, do

adduser <your preferred username>

then follow the prompts.

3. Adjust ssh keys for new user

Make sure you setup SSH Keys for your new user to be able to access this server. You can
generate ssh keys in linux with the command:

ssh-keygen -t rsa 2048 and this will create a 2048 bit encryption key set. Take the defaults, and the
keys will be generated named id_rsa and id_rsa.pub . Never share the id_rsa key, but put the
id_rsa.pub key on your VPS. You can transfer a key to a VPS with the command:

ssh-copy-id <your username>@<your server ip or fqdn> So, it will look similar to ssh-copy-id
bobby2shoes@vps.bobbysboots.com .

4. Login as new user

ssh <your username>@<your server ip or fqdn>

5. Install Docker-CE and Docker-Compose with script using the instructiosn above, if you haven't
already done so.

6. clone the self hosted gateway repo

git clone https://github.com/fractalnetworksco/selfhosted-gateway.git

https://hover.com/SHPaiirr

7. Run the following commands:

cd selfhosted-gateway

NOTE: You need make installed for this part.

make setup

make gateway

Now on the Client server:
1. Again, install Docker-CE and Docker-Compose if needed.

2. Clone the same repo as above.

git clone https://github.com/fractalnetworksco/selfhosted-gateway.git

3. cd into the repo folder that is created.

cd selfhosted-gateway

4. You need to make sure your users SSH keys from this server are set for use on the VPS, just lilke
we did above. Then, run the following to make sure SSH is ready on the system.

eval `ssh-agent -s`

ssh-add ~/.ssh/id_rsa

4a. Run the command

make docker

5. Run the following command for each application you want to tunnel to:

make
 link GATEWAY=<your ssh user and host e.g. bob@mysuperdomain.com>
FQDN=<your app subdomain e.g. myapp.mysupeerdomain.com>
EXPOSE=<your app container name and port it runs on in docker
container e.g. get_my:3000>

For my app, called get_my that runs on port 3000, I created a subdomain called
myget.routemehome.org . I own routemehome.org , and added myget to it, using an A-record to point
the sub-domain to my VPS public IP address. I used the user brian to ssh to this server, so my ssh
command looks like ssh brian@myget.routemehome.org . So the command I run to get my tunnel
generated is as follows:

make link GATEWAY=brian@myget.routemehome.org FQDN=myget.routemehome.org EXPOSE=get_my:3000

NOTE: while the domain for my ssh is the same as my FQDN, it's not necessary for it to be the
same. If I were to create another tunnel for my Jellyfin app, and I gave it an FQDN of
jellyfin.routemehome.org, the command to generate the tunnel would be:

make link GATEWAY=brian@myget.routemehome.org FQDN=jellyfin.routemehome.org EXPOSE=jellyfin:8096

The output from this command should give you yaml code for a docker-compose segment to add to
the compose file of the app you are tunneling.

If that command doesn't work, then use the create-link.sh script found in ../gateway/scripts/

The syntax will be very similar:

Take this yaml code, and add it as a new service section in your docker-compose.yml file, then do

docker-compose up -d

to bring up the tunnel and app. Now go to your subdomain on https://myapp.mysuperdomain.com
and your app should come up... tunneled out of your local server through your vps with encryption
via WireGuard.

Repeat this tunnel generation for as many apps as you want, and happy self-hosting!

Support my Channel and Content
Support my Channel and ongoing efforts through Patreon:
https://www.patreon.com/bePatron?u=234177

link:
 image: fractalnetworks/gateway-client:latest
 environment:
 LINK_DOMAIN: myapp.mysuperdomain.com
 EXPOSE: get_my:3000
 GATEWAY_CLIENT_WG_PRIVKEY: OJpZOqmUiYEEEMsYLSmlnOP/HoHM8LOf5hxgtx4mEHA=
 GATEWAY_LINK_WG_PUBKEY: DBdD2HbaapfqQQtPLQi9lj54MR96q5Fs418JHpO3TBg=
 GATEWAY_ENDPOINT: 109.45.23.221:49153
 cap_add:
 - NET_ADMIN

Revision #2
Created 30 September 2022 15:07:02 by Brian McGonagill
Updated 13 February 2023 23:59:13 by Brian McGonagill

https://myapp.mysuperdomain.com
https://www.patreon.com/bePatron?u=234177

