
Update Docker - Keep your data too.

Updating Docker
Containers - What
aBout my data?

https://www.youtube.com/embed/KfpMUBnmmq4

If you've been following my channel on YouTube, or my articles here for any amount of time, you
probably know that I really love Docker as a means to self host pretty much anything. While
docker is an amazing tool, many of your have been on this journey of learning about docker with
me for a few years now. I definitely still don't know everything, but I do know about updating
containers, and keeping data safe and secure.

Admittedly, when I first started using docker, I didn't understand how to persist data between
restarts of the same container, or updates of the container to newer image versions. I really just
though something was broken about it, and it put me off of using docker for another year at least.

Once I realized that persisting data just took a couple more lines of yaml in a docker compose , or a
couple of more flags in the docker run command, I was so much better off. Add that to a really
good back up strategy, and you'll be able to update your docker containers with little concern over
data loss in the process.

A system with Docker and optionally Docker Compose installed on it
At least one docker based application running in a container, or an application you would
like to run in mind.
About 10 - 15 minutes of your time

Really and truly, this is an entire article all on its own. So much so, in fact, that I already have an
article on the topic, as well as a video about how I handle backing up my docker containers and
data.

In short, you should create a script (also available in that other article) that will move into each
applications folder, and stop the running containers (docker compose is really handy for this), and
repeat this for each folder / application you have. When they are all stopped, create an archive of
the parent "docker" folder, then go back in an restart each application. Copy the archive to the

Update Docker - Keep your data
too.

What You'll Need

Backing Up Docker Containers

https://www.youtube.com/embed/KfpMUBnmmq4
https://www.youtube.com/c/AwesomeOpenSource
https://wiki.opensourceisawesome.com/books/backing-up-docker/page/backup-docker-data-and-configs
https://wiki.opensourceisawesome.com/books/backing-up-docker/page/backup-docker-data-and-configs

final storage location (USB Drive, Network Share, separate drive or partition, cloud, etc). Finally,
remove the archive you created from your host machine if you want.

The part where you stop the containers, can be the scariest, especially if you haven't setup your
data volumes to be in the same folder as the docker-compose file. In this case, you need to know
where your data is being stored on your host system.

Volume mapping is how you persist data (keep it from being deleted) in docker between container
restarts / updates. Most of the time the person / group who makes a docker image available will
list out the volumes you will want / need to map. Think of it like creating a symlink from some path
on your host system, to a path predefined by the application inside the docker container.

For instance. My media for my Jellyfin server is actually stored in /mnt as it's on an NFS share that
has 12 TB of space. None-the-less, I have a volume mapping that makes sure the data and configs
are all persisted between updates.

My volume mapping for Jellyfin looks like:

Here, you can see that I've mapped my configuration folder to the same folder where I keep the
Jellyfin docker-compose.yml which is /home/brian/docker/jellyfin .

I also have the cache mapped there. I could map the cache to some other location, but this is fine
for my use case.

You can see that my media is mapped to /mnt/data/media which maps to the container location of
/media .

Because I've made these mappings, when I start, stop, restart, recreate, or update my Jellyfin
container my media, configurations, and cache of data are all persisted, and my data is not lost. If
you don't map the volumes you need on a docker container, even one where you are using a
database container, the data is considered "volatile". This means when you start, stop, restart,
update, or recreate, the container, the data is removed and everything is recreated.

So, always make sure you keep your volumes mapped in docker. This will save you a ton of
heartache when it comes time for updates.

Volume Mappings in Docker

volumes:

 - /home/brian/docker/jellyfin/config

 - /home/brian/docker/jellyfin/cache

 - /mnt/data/media:/media

Why Stop the Containers for Backup?

While it's not technically necessary, it's always a best practice to stop the containers. This helps to
ensure that data will not be in the middle of a change while the backup is happening. Just like a
primary OS, reads / writes of data while it's in the middle of a change can create data corruption. If
you're like me, and are generally the only person using your applications (except for Jellyfin), then
you could probably get away with running a backup script without stopping the containers. The
thing you'd hate is finding out that your backup data is all corrupted on the day you actually need
that backup...so I highly recommend stopping the containers, creating the archive, then starting
them up again.

There are several ways that you can update your containers. It's highly dependent on you, and
your faith in the person(s) creating the images you're using for your containers.

Docker Compose is your friend. Believe me. It takes a normally long docker run command, and
gives it structure using yaml syntax, and makes it easier to put multiple services (container
definitions) into a single file allowing you to more easily have them work together. It also creates a
special docker network for each compose file unless you specify a network you want the containers
to be on.

If you are using Docker Compose for your container setup and management, then updating your
containers is super easy. Of course, always make sure you've done a recent backup (just in case).
Next, go into the folder where the docker-compose.yml file is located, and run the command:

docker compose pull if you're on an older version of Docker Compose, and you get an error with
that command, you may need to use docker-compose pull instead.

Presuming you are using the latest tag on your containers this will trigger docker to seek out any
newer images available for your applications (services) and pull them down. This will not update
the running container yet. It only pulls down the newer images if any exist.

Once you've pulled down the new images, you can run

docker compose up -d

This will update your running containers to the newest image version. I've rarely had an issue with
this method of pulling and updating my containers. It's actually a very useful way to handle
updates, as it updates many images in an application stack all at once, and can take away several
manual steps.

If you're really feeling brave, you can combine the two commands into one line, and have them run
one after the other like this:

docker compose pull && docker compose up -d

How do I Update?

The Manual Way

If you're like me, and you like to follow the logs after an update, then you can add the command,
on it's own, or in the single line like this:

On its own:

docker compose logs -f

In the single line:

docker compose pull && docker compose up -d && docker compose logs -f

Docker Compose is not a requirement, it's simply a tool that helps make Docker a bit more
organized and slightly simpler (IMO). You can update your containers using the straight Docker CLI
as well.

To stop a container run:

docker stop <container name> for instance docker stop jellyfin .

If you're not sure of the names of your running containers, you can always get the names with
docker ps .

To pull a new image, you can run

docker pull <image name:tag> for instance docker pull jellyfin/jellyfin:latest .

To update the container, you'll have to do a few more manual steps:

1. Stop the container
2. remove the container (yes, delete the container - but not to worry, your mapped volumes

will persist the data for you).
3. create a new container with the same name, and same port and volume mappings as you

used originally.

If we apply the above steps to Jellyfin, it looks like this:

docker stop jellyfin

docker rm jellyfin

docker run -d --name jellyfin -e TZ=America/Chicago -p 8096:8096 -v
/home/brian/docker/jellyfin/config:/config -v /home/brian/docker/jellyfin/cache:/cache -v

/mnt/data/media:/media jellyfin/jellyfin:latest

This is why I like Docker Compose, it's a bit easier to remember docker compose pull and then
docker compose up -d .

I Don't Use Docker Compose

Let's say you're an adventurous and carefree type of person who likes to take a trip on the wild
side... you know, the kind of person who adds bacon to a grill-cheese sandwich, or toasts the bread
on a peanut-butter and jelly sandwich. Well, if that's you, then there are tools to help automate
updates for your docker containers as well. One really exceptional tool is called Watchtower. I did
a video and write up on it a couple of years ago, and it's still a great application for making sure
you're staying up to date.

Watchtower, by default will watch all of the containers on your system, and will check on a
schedule (that you can set) to see if any new images are available. If so, it will trigger docker to
download the new image, and update the container with it. It's actually pretty awesome!

You can, however, setup watchtower to only check for new image updates, and then send you an
email about the available updates. You use labels on the containers you don't want Watchtower to
automatically update for you. The nice thing about a feature like this is it gives you the information
that updates are available, but allows you the choice in updating or not.

This is precisely why we want a good backup strategy that we can depend on. I have had images
pull down and break a running container. It's rare, but it does happen. I have also just done some
really dumb things that messed up data or configurations for a running container that I then
couldn't get back into and fix. The backups are super handy for quickly getting your entire docker
folder, or just a single application folder out of, replaced on your production system, and back up
and running just like ti was before you hit hard times.

I hope this information will give you solace in knowing that your data can be safe within Docker,
and that you have a ton of power and control over your data integrity, data availability, data
security, and over your systems reamining up to date.

Support my Channel and ongoing efforts through Patreon:
https://www.patreon.com/awesomeopensource

The Automated Route

What if something breaks?

Support My Channel and Content

https://wiki.opensourceisawesome.com/books/automated-updates/page/watchtower-update-docker-containers-automatically
https://wiki.opensourceisawesome.com/books/automated-updates/page/watchtower-update-docker-containers-automatically

