Wikis,
Documentation, and
Blogs

o Wiki]S

o WikiJS, Open Source, Powerful, Configurable, Intuitive

o WriteFreely

o Install WriteFreely

e Bookstack

o Install and Setup Bookstack, an Open Source Wiki

Wiki]S

WikiJS, Open Source,
Powerful, Configurable,
Intuitive

https://www.youtube.com/embed/Dd8 plibBYk

Wiki)S is a tremendously powerful, extremely full-featured open source, self hostable Wiki system.
It has a modern user interface, and tons of settings, configuration, and customization options.

Installing it with Docker-CE and Docker-Compose makes it a breeze to get WikiJS up and running in
no time.

Today, we'll go through setting up WikiJS, and the basics of configuration and usage.

What you'll need

e Docker-CE

e Docker-Compose

e (optional) Portainer-CE (GUI for Docker)

e (optional) NGinX Proxy Manager (for full url access and SSL)
e About 15 minutes of your time.

Installing Docker-CE, Docker-Compsoe,
Portainer-CE, and NGIinX Proxy Manager

In the video, | show you how to create a user with sudo privileges, so you aren't setting up these
things as root. It only takes a minute to do, so definitely take that step if you haven't already.

You can easily install Docker-CE, Docker-Compose, Portainer-CE, and NGinX Proxy manager by
using this quick install script | created and maintain on Github. Just use the command:

https://www.youtube.com/embed/Dd8_plibBYk

wget https://raw.githubusercontent.com/bmcgonag/docker_installs/main/install_docker_nproxyman.sh
To download the script to your desired host.

Change the permissios to make the script executable:

chmod +x ./install_docker_nproxyman.sh

and then run the script with the command:

.Jinstall_docker_nproxyman.sh

When run, the script will prompt you to select your host operating system, then will ask you which
bits of software you want to install.

Simply enter 'y' for each thing you want to install.
At some point, you'll be asked for your super user (sudo) password as well.
Allow the script to complete installation.

At this point, you might want to log out and back in, as this will allow you to use the docker and
docker-compose commands without the need of "sudo" in front of them.

Installing WikiJS

Now that we have Docker-CE and Docker-Compose installed, we can move forward with getting
WikiJS installed and setup. First, let's create a folder structure to help keep our docker applications
organized and easy to backup.

Let's create a "docker" folder to be the top level (parent) folder. If you already have an
organizational structure for your docker installs, then don't worry about this part.

And we'll move into that parent level folder:

mkdir docker

cd docker

Now, let's make a directory for our WikiJS install and move into it.

mkdir wikijs

cd wikijs

Now that we are inside our "wikijs" folder, we'll create a file called "docker-compose.yml|"

nano docker-compose.yml

We need to copy the following yaml code block, and paste it into the "docker-compose.yml" file we
have open for editing. So, highlight the code-block below, and copy it.

version: "3"
services:
wikijs:
image: Iscr.io/linuxserver/wikijs
container_name: wikijs
environment:
- PUID=1000
- PGID=1000
- TZ=America/Chicago
volumes:
- ./config:/config
- ./data:/data
ports:
- 3000:3000

restart: unless-stopped[]

Paste the code-block into the open nano editor with a right-click, paste, or with the hotkey
combination CTRL + Shift + V.

In the file, you'll want to note a few places, where you may want to make changes.

First, let's look at the port mapping. 3000 is a very common port for lots of applications, so it's
generally a good idea to change this to some other port on your host machine. The "host" machine
is the physical system you are putting the dockerized application on. The "container" is the
application space where the app runs (separated / sandboxed away from the physical OS). The port
and volume mappings are setup as

<host>:<container>

So, feel free to change the host side of a volume mapping or port mapping in the docker-
compose.yml file. Just do not change the container side unless you are a developer, and know
what you are doing.

For my setup, we used port 9190 instead of port 3000, so my port mapping looked like:

ports:

- 9190:3000

Additionally, if you are using the stacks feature in Portainer-CE to run this, instead of a docker-
compose.yml file, change the volume mappings to use the absolute (full) path to the wikijs folder
we created, instead of the relative ./config and ./data paths we have in the docker-compose.yml

file here.

In my case, for a Portainer-CE stack, | would have my volume mappings set like:

volumes:
- /home/brian/docker/wikijs/config:/config

- /home/brian/docker/wikijs/data:/data

Next, you'll want to make sure your PGID and PUID are set correctly. You can check this, by
opening another terminal window (or SSHing into your host machine with a second terminal), and
entering the command:

id
Then comparing the values in the output to the values in the docker-compose.yml file.
Finally, set your timezone correctly for the TZ variable.

Once everything is set in your docker-compose.yml file, save it with CTrl + O, then press enter to
confirm, and close the nano editor with CTRL + X.

Now, we are ready to run the docker-compose file and pull down the Wiki]S image, and start the
container.

Just enter:
docker-compose up -d

In your terminal (from inside the ./docker/wikijs directory), and allow the image to download, and
start.

When the container is done starting you should see done in the terminal. Make sure you don't see
any errors in the terminal output. If everything went well, you should now be able to use a web
browser to go to your host machine's IP and the port you entered in the docker-compose.yml file,
and be presented with the first run wizard of WikiS.

Check out the video linked at the top of this article to get details on the basic configuration and

usage of Wiki)S, as well as how to setup your Wiki with a FQDN (Fully Qualified Domain Name) and
LetsEntcrypt SSL Certificate.

Support my channel and content

Support my Channel and ongoing efforts through Patreon:

https://www.patreon.com/bePatron?u=234177

https://www.patreon.com/bePatron?u=234177

WriteFreely

A clean, simple blogging and journaling platform

WriteFreely

Install WriteFreely

https://www.youtube.com/embed/pR4QATSRyXA

Sometimes you just need a writing tool that will allow you to get to work. Not something that will
take you hours of setup and configuration, and theming, and layout, and on, and on, andon.... My
friends, WriteFreely is an open source, self hosted platform that does just that. We'll set this up
using a nice docker image a community member has created, and we'll make our time worthwhile
once again.

Whether you are documenting the steps you use to change the oil on your car, or set the alarm in
your home, or setup an entire domain with users and VLANs, and VPNs, and neighborhood
hotspots, the most important part is just starting. Sometimes setting up software to help
document it all can be the real hindrance to getting any project off the ground. With WriteFreely,
we'll remove that hindrance.

What you'll need

e Docker and Docker Compose

e (Optional) NGinX Proxy Manager or some other reverse proxy application.
e (Optional) A Domain Name that you own and can setup DNS A-records for
e About 20 minutes of your time

Installation

Installation of Docker and Docker Compose via a Simple
Script

You can easily install Docker-CE, Docker-Compose, Portainer-CE, and NGinX Proxy manager by
using this quick install script | created and maintain on Github. Just use the command:

wget https://gitlab.com/bmcgonag/docker installs/-/raw/main/install docker nproxyman.sh

To download the script to your desired host.

https://www.youtube.com/embed/pR4QATSRyXA
https://gitlab.com/bmcgonag/docker_installs/-/raw/main/install_docker_nproxyman.sh

Change the permissions to make the script executable:
chmod +x ./install_docker_nproxyman.sh

and then run the script with the command:
.Jinstall_docker_nproxyman.sh

When run, the script will prompt you to select your host operating system, then will ask you which
bits of software you want to install.

Simply enter 'y' for each thing you want to install.
At some point, you may be asked for your super user (sudo) password as well.
Allow the script to complete installation.

At this point, you might want to log out and back in, as this will allow you to use the docker and
docker-compose commands without the need of sudo in front of them.

Install and Configure Write Freely

Let's start by creating our folder structure for our installation. | like to have a parent level folder
called "docker" that | then put all of my docker applications inside of. each in their own folders.

mkdir -p docker/write-freely

Now let's move into our new folder with

cd docker/write-freely

want to create our docker-compose.yml file that tells docker which image(s) to pull, and how to run
our application.

nano docker-compose.yml

Now, use copy / paste to paste the following code block into that new file:

Version: '3.3'
services:
write-freely:
image: nephatrine/write-freely:latest
container_name: write-freely
environment:
TZ: America/New_York
PUID: 1000

PGID: 1000
ports:

- "70:70/tcp"

- "8080:8080/tcp"
volumes:

- ./write-freely:/mnt/config

In the above code block, you'll want to adjust a few items:

e Make sure you set the TZ: variable to your local timezone. In my case, | changed it to
'‘America/Chicago’

e on the ports, you'll likely want to change the left side port number from 8080 to some
other, less common port. In my case | used 8250, so my mapping looked like this when
done: '8250:8080/tcp’

e If you know your user id and group id are not 1000 on the system you are installing on,
then you'll want to change those numbers to correspond to your user id and group id
numbers as well, but most likely 1000 is correct.

Now save the file with CTRL + O, then press Enter to confirm, and use CTRL + X to exit the nano
editor.

We are finally ready to run our application.
docker compose up -d

Once you run the above command, you'll see the image being pulled down, and the container
being started up. Wait about 20 seconds or so after you are retunred to the normal terminal
prompt, then open your favorite, modern, web browser, and browse to the ip address of your host
machine / server where you are running the application, and the port number you used on the left
side of the second port mapping above.

In my setup | went to http://192.168.10.60:8250

You should see the main default page of WriteFreely. IF so, that's great, but we still have a bit of
work to do.

Create an Admin User

Now, let's create an admin user. The author gives us a nice, and simple little command to do this,
but first we need to setup a special configuration file for WriteFreely. In my video | did this through
the mapped local volume, but here we'll do it through the docker container bash terminal.

To enter the bash environment of your running container enter the following command. Notice that
the prompt will change when you do.

docker exec -it write-freely /bin/bash

http://192.168.10.60:8250

Now, let's move into the folder where we need to copy the .ini file already generated.
cd /mnt/config/etc

Next, we'll create a new folder called 'writefreely":

mkdir writefreely

And we'll copy the existing file 'writefreely.ini' to this folder, renaming it to 'config.ini'
cp writefreely.ini ./writefreely/config.ini

Finally, let's edit our new config.ini file

nano ./writefreely/config.ini

Again, in the video there were a couple of things | said not to change, but we will actually want to
change them if you are going to access your writefreely install from a fully qualified domain name
(outside your own network).

[server]

hidden_host =
port = 8080
bind = 0.0.0.0

tls_cert_path =
tls_key path =
autocert = false

templates_parent_dir = /var/www/writefreely-live

static_parent_dir = /var/www/writefreely-live
pages_parent_dir = /var/www/writefreely-live
keys_parent_dir = /mnt/config/data
hash_seed =

gopher_port =70

[database]

type = sqglite3

filename = /mnt/config/data/writefreely.db
username =

password =

database =

host = localhost

port = 3306

tls = false

[app]

site_name = Blog Site # <-- Change this to your desired site title and remove this comment
site_description = A Blog Site # <-- Change this to your desired site subtitle and remove this comment
host = http://localhost:8080/ # <-- Change localhost to your domain name and remove this

comment. e.g. http://myblog.example.com

theme = write
editor =
disable_js = false
webfonts = true
landing =
simple_nav = false
wf_modesty = true
chorus = false
forest = false
disable_drafts = false
single_user = false
open_registration = false
open_deletion = true
min_username_len =3
max_blogs =3
federation = true
public_stats = true
monetization = false
notes_only = false
private = false
local_timeline = true
user_invites = user

default_visibility = public
update_checks = false

disable_password_auth = false

[oauth.slack]
client_id =
client_secret =
team_id =
callback proxy =

callback_proxy_api =

[oauth.writeas]

client_id =
client_secret =
auth_location =
token_location =
inspect_location =
callback_proxy =

callback_proxy_api =

[oauth.gitlab]

client_id

client_secret

host

display_name =
callback proxy =

callback _proxy_api =

[oauth.gitea]
client_id =

client_secret

host =
display_name =
callback proxy =

callback_proxy_api =

[oauth.generic]
client_id =
client_secret =
host =
display_name =
callback_proxy =
callback _proxy_api =
token_endpoint =
inspect_endpoint =
auth_endpoint =
scope =
allow_disconnect = false
map_user_id =
map_username =
map_display_name =

map_email =

| have identified the bits you'll want to change with a comment int he code block above. Make sure
to make the necessary changes, then remove my comment.

You can edit in the VI editor by pressing | one time to go into insert mode. When done editing
pres Esc to get back out of editing mode.

Save the changes and exit the VI editor by pressing :wq .

Oddly, this container wants the config.ini and the writefreely.ini files to be the same, as it seems to
use both. So, let's fix that real quick as well.

cp ./writefreely/config.ini ./writefreely.in i

Next, we'll run the command to create our new administrative user:

writefreely -c /mnt/config/etc/writefreely/config.ini --create-admin [username]:[password]

Replace the [username] with the username you want, and the [password] with a long, strong
password. My command looked like this:

writefreely -c /mnt/config/etc/writefreely/config.ini --create-admin brian:aReallyLongStrOn6Pa55w0rd
Once run, you should see a success message. If so, we are done in the docker container
First, exit the container with exit

Now, let's restart our docker compose file.

docker compose restart

And allow the container to restart.

Awesome! Now, refresh your browser, and click the Log In button at the top of the screen. Enter
your new administrative credentials to log in.

You can now start writing in your personal blog location, or you can click around a bit. Note, you
do have a draft location that allows you to write and save, but won't publish your work publicly
until you move it to your personal blog location.

Setup A Reverse Proxy

If you want to access your new site from outside of your home, you'll want to setup a reverse proxy
to make sure requests for the site are routed properly to this docker container. | use NGinX Proxy
Manager, but you are welcome to use any reverse proxy you are more comfortable with.

In NPM (NGinX Proxy Manager) click Add Proxy Host and in the new pop up winodw enter the
domain name of your writefreely install.

You need to own the main domain, and have an A Record pointing to your public IP address. This is
important if you want this to function properly.

| entered ytdiy.routemehome.org. | own the domain routemehome.org, and have an A-record
already setup to point to the public IP address of my server. My firewall is configured to forward all
incoming requests on port 80 and / or 443 to the server running NGinX Proxy Manager. NPM then
handles the routing of the requests for my different services to the proper docker container /
server.

Next, enter the local IP address of your server running WriteFreely into the IP field, and the port
you mapped on the left side of the 8080 port mapping into the port field. | entered 192.168.10.60
and 8250 respectively.

Next, tick the options for Block Common Exploits, and Websocket Support.

Now select the SSL tab, and choose Request a New Certificate from the drop down, then tick the
options for Force SSL, HTTP/2 Support, and optionally HSTS options as well. Make sure your email
is filled in, and tick the option to accept the LetsEnctrypt terms of service.

Click Save. The pop-up should just disappear if everything is setup correctly, and you should have
a new entry in your proxy list for your new WriteFreely install.

You can click on the domain name in the list, and make sure it opens properly to your WriteFreely
page. Login, and you're ready to start writing.

Support My Channel and Content

Support my Channel and ongoing efforts through Patreon:
https://www.patreon.com/awesomeopensource

Bookstack

Bookstack

Install and Setup Bookstack,
an Open Source Wiki

Bookstack is an incredibly powerful, open source, self hosted wiki solution. It's set apart from other
wiki solutions by the way it allows you to organize content. Think of it as your digital library of
documentation.

You start with Shelves (a larger overall categorization) of various documentation. Then on those
shelves you have your books. Books are the next level down of categorizing things. Within books
you have chapters, again a level to more closely gather like information. And within those chapters
you have pages. Pages are where the specific document lives.

Here's is an example, but certainly not the only way to use this organizational hierarchy.

Shelf 1: Networking -> Book 1: Networking Tools -> Chapter 1: IPv4 Tools - Page: Octets

We can repeat the entire line above except the page, and add a new page called "Network Mask".
Shelf 1: Networking -> Book 1: Networking Tools -> Chapter 1: IPv4 Tools - Page: Network Mask
And so on as we build out our wiki.

Here's the coolest part. You don't have to keep the Networking Tools book in just 1 shelf. You can
have it on as many shelves as it matches. It's like having multiple copies of the book in different
locations in your library.

Shelf 1: Networking
Shelf 2: VPNs
Shelf 3: Dynamic DNS

These could all be a home for a book called "Networking Tools". This guarantees a much higher
percentage chance that you'll find the appropriate material when you go digging through topics
that may be related, but not fit into quite the same top level category. OF course, you could take
the topics of VPNs and Dynamic DNS and just as easily make them Books in the Networking shelf.
There is no wrong way to organize things.

Installing and Running Bookstack

What You'll Need

e A server, either bare metal, VPS, or a VM or Container such as LXC, LXD, or Incus
e Docker and Docker Compose installed on that server
e (optional) A public IP address
e (optional) A Domain or Subdomain name for your installation
e (optional) a Reverse Proxy if running inside a LAN
e About 15 minutes of your time
o * Optional items above are only if you want to expose your Wiki to the public
internet.

Installation via a Simple Script

You can easily install Docker-CE, Docker-Compose, Portainer-CE, and NGinX Proxy manager by
using this quick install script | created and maintain on Github. Just use the command:

wget -0 install-docker.sh https://gitlab.com/bmcgonag/docker installs/-/raw/main/install docker nproxyman.sh

To download the script to your desired host.
Change the permissions to make the script executable:
chmod +x ./install_docker.sh

and then run the script with the command:

.Jinstall_docker.sh

When run, the script will prompt you to select your host operating system, then will ask you which
bits of software you want to install.

Simply enter 'y' for each thing you want to install.
At some point, you may be asked for your super user (sudo) password as well.
Allow the script to complete installation.

At this point, you might want to log out and back in, as this will allow you to use the docker and
docker-compose commands without the need of sudo in front of them.

Install and Setup Bookstack in Docker using Docker
Compose

https://gitlab.com/bmcgonag/docker_installs/-/raw/main/install_docker_nproxyman.sh

First, let's create a folder structure which will support a solid backup strategy for our containers.
We'll make a directory structure with aa top-level directory called docker. Inside that directory we'll
then create a directory for each service or application we want to run. In this case that second
level directory will be called "bookstack". We can make both directories with a single command,
and this command gives the added benefit, that if either directory already exists, it will just use
that directory.

mkdir -p docker/bookstack

From the man pages of the mkdir command:

-p, --parents
no error if existing, make parent directories as needed

Next, we'll move into that directory with the command:
cd docker/bookstack

Inside the 'bookstack' directory we need to create one more directory called 'data'. This is where
the container will house and persist the data and database for our docker container. This is a very
important folder, and should be backed up regularly in order to preserve your bookstack data
should anything catastrophic happen to the installation.

mkdir data

Now, let's create our file to tell Docker Compose how to bring up and configure our Bookstack
Installation. I'm actually going to add two versions of the file below.

The first version will be for those wanting to use the built in Bookstack authentication system (login
with username and password). The second will be for those who already have an Identity Provider
setup like Authentik, Authelia, Keycloak, etc. and want to use OpenlDConnect (OIDC) to login to
their Bookstack with a single sign on (SSO) method.

Create a new file in your 'docker/bookstack' folder, and call it 'compose.yaml' using this command:
nano compose.yaml

Now copy the yaml code from the version you need below, and paste it into your text editor. For
the terminal you can paste by right-clicking with the mouse and selecting 'Paste', or you can use
the CTRL + Shift + V hotkey combination on your keyboard (Linux / Windows), or CMD + V for
MacOS.

compose.yaml to use the built in Login with Bookstack

services:
bookstack:

image: Iscr.io/linuxserver/bookstack

container_name: bookstack

environment:
- TZ=America/Chicago
- PUID=1000 # check this value with the command 'id'
- PGID=1000 # check this value with the command 'id'
- APP_URL="https://books.yourgreatdomain.com"
- DB_HOST=bookstack_db
- DB_USER=bookstack
- DB_PASS=a-different-long-strong-password-with-a-lot-of-numbers-and-letters
- DB_DATABASE=Dbookstackapp
- MAIL_DRIVER=smtp
- MAIL_HOST=smtp.youremaildomain.org
- MAIL_PORT=587
- MAIL_USERNAME=you@youremaildomain.org
- MAIL_PASSWORD=your-smtp-email-password
- MAIL_ENCRYPTION=tls
- MAIL_ FROM=you@youremaildomain.org

volumes:
- ./data:/config

ports:
- 80:80

restart: unless-stopped

depends_on:
- bookstack_db

bookstack_db:

image: Iscr.io/linuxserver/mariadb

container_name: bookstack _db

environment:
- PUID=1000
- PGID=1000
- MYSQL_ROOT_PASSWORD=a-long-strong-password-with-numb3rs-and-le77er5
- TZ=America/Chicago
- MYSQL_DATABASE=bookstackapp
- MYSQL_USER=bookstack
- MYSQL_PASSWORD=a-different-long-strong-password-with-a-lot-of-numbers-and-letters # must match

the one in the above section

volumes:
- ./data:/config

restart: unless-stopped

Next we have the version to use if you have your own IdP to authenticate through. If you don't
know what this means, you probably should use the first compose file above.

compose.yaml for those wanting OIDC for SSO

services:
bookstack:

image: Iscr.io/linuxserver/bookstack

container_name: bookstack

environment:
- TZ=America/Chicago
- PUID=1000 # check this value with the 'id' command
- PGID=1000 # check this value with the 'id' command
- APP_URL="https://docs.yourgreatdomain.org"
- DB_HOST=bookstack db
- DB_USER=bookstack
- DB_PASS=a-long-strong-password-with-lots-of-numbers-and-letters
- DB_DATABASE=Dbookstackapp
- MAIL_DRIVER=smtp
- MAIL_HOST=smtp.yourgreatdomain.org
- MAIL_PORT=587
- MAIL_USERNAME=you@yourgreatdomain.com
- MAIL_PASSWORD=your-long-strong-email-password-for-the-smtp-server
- MAIL_ENCRYPTION=tls
- MAIL_FROM=you@yourgreatdomain.org
Set OIDC to be the authentication method
- AUTH_METHOD=o0idc
Control if BookStack automatically initiates login via your OIDC system
if it's the only authentication method. Prevents the need for the
user to click the "Login with x" button on the login page.
Setting this to true enables auto-initiation.

- AUTH_AUTO_INITIATE=false # feel free to change it to 'true'

Set the display name to be shown on the login button.
(Login with <name>)
- OIDC_NAME=Authentik # whatever you want the login button to say
Name of the claims(s) to use for the user's display name.
Can have multiple attributes listed, separated with a '|' in which
case those values will be joined with a space.
Example: OIDC_DISPLAY_NAME_CLAIMS=given_name|family_name
- OIDC_DISPLAY_NAME_CLAIMS=name
OAuth Client ID to access the identity provider
- OIDC_CLIENT_ID=the-client-id-from-your-auth-server
OAuth Client Secret to access the identity provider
- OIDC_CLIENT_SECRET=the-auth-secret-from-your-auth-server-for-the-oidc-provider-you-created-ahead-
of-time
Issuer URL
Must start with 'https://'
- OIDC_ISSUER=https://auth.youroidcprovider.org/application/o/bookstack-oauth/
Enable auto-discovery of endpoints and token keys.
As per the standard, expects the service to serve a
*<issuer>/.well-known/openid-configuration®™ endpoint.
- OIDC_ISSUER_DISCOVER=true
volumes:
- ./data:/config
ports:
- 80:80
restart: unless-stopped
depends_on:
- bookstack_db
bookstack_db:
image: Iscr.io/linuxserver/mariadb
container_name: bookstack_db
environment:
- PUID=1000
- PGID=1000
- MYSQL_ROOT_PASSWORD=a-different-long-strong-password-with-lots-of-numbers-and-letters
- TZ=America/Chicago
- MYSQL_DATABASE=bookstackapp
- MYSQL_USER=bookstack
- MYSQL_PASSWORD=a-long-strong-password-with-lots-of-numbers-and-letters # must match the one in

the section above

volumes:
- ./data:/config

restart: unless-stopped

Regardless of the yaml you choose to setup, you need to make sure to update several of the
environment variables, and potentially the ports that you'll access the service on.

You can modify the port on the left side of the port mapping in the yaml. The left side of the
mapping is the port where the service is accessed on the host machine. 80 is the standard web
server port, so | suggest if you are running this inside a LAN, you change the port to something
non-standard, and then use a reverse proxy to access the service as needed from outside the LAN.
A port like 8089 would be good for instance. As long as no other service is using port 8089 on the
host machine, this should not cause an issue. If there is already a service using 8089, then you can
use any valid port number you like which is not already in use.

Additionally, you'll need to change the passwords for the database connections. Use a very long,
strong, password, and make sure the password entries for the variables MYSQL_PASSWORD and
DB_PASS match exactly.

You'll need to update the email / smtp settings if you want your install to be able to send emails to
you as well. If not, feel free to leave the placeholder info there.

Once you've made the necessary changes, save the file with CTRL + O, then press Enter to
confirm. This is a good time to briefly go back through the file, check your spacing (as yaml is

space dependent), and also make sure you have entered everything correctly.

Exit the nano text editor with CTRL + X.

Bring Up our Bookstack Install

