
Mastodon

Zabbix
Zabbix Install with Docker

Installing Zabbix Monitor with Docker

https://fosstodon.org/@MickInTx

Zabbix Install with Docker

Zabbix Install with Docker

Installing Zabbix Monitor
with Docker

https://www.youtube.com/embed/ec2G1PeLS5k

I've been asked about Zabbix for a while now. I have covered some other solutions for monitoring
equipment / services in the past. CheckMK, using Dashy Widgets, Glances, NetData, and several
others are some really great options for monitoring, and as with any software, the right thing for
you will depend greatly on your needs. As I started looking at Zabbix, I was contacted by Marc
over at OneMarcFifty about doing a collaborative video series with him on Zabbix. He asked if I
would be interested in covering the install, and he would cover some more in-depth setup of
getting monitored systems enrolled, as well as setting up email alerts for anything the system
finds.

How could I say, "No" to such a great opportunity? Of course I was interested. Marc does some
absolutely amazing content, and I have watched his channel for a couple of years now. He has
some incredibly great content on all kinds of tech topics, and his explanations are just terrific, so
definitely jump over to his channel for the second part of this tutorial once you've got Zabbix up
and running. You can find the video right here.

Installation
What you'll need

A system with Docker-CE and Docker-Compose installed (we'll call this the Host Server for
this tutorial)
SSH Access to the Host Server
Git, Curl, Wget installed on the Host Server

https://www.youtube.com/embed/ec2G1PeLS5k
https://www.youtube.com/c/OneMarcFifty?app=desktop

About 30 Minutes of your time

Installation of Docker via a Simple Script
You can easily install Docker-CE, Docker-Compose, Portainer-CE, and NGinX Proxy manager by
using this quick install script I created and maintain on Github. Just use the command:

wget https://gitlab.com/bmcgonag/docker_installs/-/raw/main/install_docker_nproxyman.sh

To download the script to your desired host.

Change the permissions to make the script executable:

chmod +x ./install_docker_nproxyman.sh

and then run the script with the command:

./install_docker_nproxyman.sh

When run, the script will prompt you to select your host operating system, then will ask you which
bits of software you want to install.

Simply enter 'y' for each thing you want to install. In this case, you really only need to install
Docker-CE and Docker-Compose. Feel free to answer 'n' to the other software options.

At some point, you may be asked for your super user (sudo) password as well.

Allow the script to complete installation.

At this point, you might want to log out and back in, as this will allow you to use the docker and
docker-compose commands without the need of sudo in front of them.

Alternatively, you can try the following commands:

newgrp

newgrp docker

Now you can test your ability to run a docker command by doing

docker ps

https://gitlab.com/bmcgonag/docker_installs/-/raw/main/install_docker_nproxyman.sh

If you don't get any errors, you are good to go.

Installing Zabbix
Now that we have our server software setup, we'll start on our Zabbix installation. Fortunately,
Zabbix provides a nice set of ready to use docker-compose options for us. We'll clone the Zabbix-
Docker repository from github, and then make a few modifications to some specific files to set our
Environment Variables, and then we'll be ready to run.

First, we need to make sure we have git, curl, and wget installed on our Host Server. We can install
them on Debian / Ubuntu with

sudo apt install git curl wget -y

On Fedora, CentOS, Redhat we should be able to use:

sudo dnf install git curl wget -y

On Arch, you should be able to use

sudo pacman -S git curl wget

Once those few dependencies are installed, we'll use the git command to pull down the Zabbix-
Docker repository to our local machine. First, however, let's move into the "docker" folder. If you
don't already have a top level folder to keep all of your docker applications in, I highly recommend
you set one up, as you can then simply compress and backup the top level folder and have all of
your docker applications and data backed up with one command.

cd docker

Now let's clone that repository:

git clone https://github.com/zabbix/zabbix-docker.git

This will create a folder called "zabbix-docker" with all of the files from the repository in it. We'll
move into that folder with

cd zabbix-docker

https://github.com/zabbix/zabbix-docker.git

In this folder you'll find many docker-compose template files. These are labeled in a way that is
fairly easy to understand. Each file that has "local" in the name, means that the compose file will
attempt to build new images when run, versus the files that only have "latest" and not "local" in
the name. These files will pull down pre-built images from dockerhub for us to use in our system.

In my case, I chose the file called "docker-compose_v3_alpine_mysql_latest.yml". Now, you can run
a file like this directly with the docker-compose command if you use the proper flags, but what I
prefer to do is copy the file that I want to use to a new filed simply called "docker-compose.yml". I
can then modify this file if needed, but will still have the original in place in case I need to start
over cleanly. So, let's copy our selected file:

cp docker-compose_v3_alpine_mysql_latest.yml docker-compose.yml

Next, we need to set a few environment variables. These variables are super useful, especially in
large projects like Zabbix, because you can set a value one time, and it is reused throughout the
project. This reduces issues with misspellings, mimatched values throughout a docker-compose
file, etc.

We'll move into the environment variable folder of the project with the command:

cd env_vars

In this folder, are a group of hidden files. In Linux / Unix based systems, hidden files are set by the
use of a dot / period in front of the file name. In order to see these files in our directory we use the
flag "a" with the "ls" command. We can also use the flag "l" to list out the file permissions, and
make them list vertically down the screen. So, let's list out the files:

ls -al

We need to set a few variables. Most of these files we will leave untouched, however.

First, we'll edit the following files since we are using the mysql version of the docker-compose they
provide.

MYSQL_PASSWORD
MYSQL_ROOT_PASSWORD
MYSQL_USER

We don't need to change the POSTGRES_PASSWORD, POSTGRES_USER, or MYSQL_ROOT_USER
values.

In order to edit each file, you'll use the following command structure:

nano <filename including the leading dot "." >

Make the change to the value, then save using CTRL+O, then Enter to confirm, and CTRL+X to exit
the nano editor.

We'll use the .MYSQL_USER as our first example:

nano .MYSQL_USER

You should then see this following

zabbix

Which you'll change to a username you want / prefer.

I changed mine to:

brian

Then save, with CTRL+O, and Enter to confirm, then CTRL+X to exit the nano editor.

Repeat this process for each of the files we will be making edits in.

Change the password values in .MYSQL_PASSWORD and .MYSQL_ROOT_PASSWORD to be long,
strong passwords.

Next, we may want to make a change in a couple of the other files in this directory. I make a few
modifications in the video, but they are not necessary. If you want to make changes, be certain

NOTE: If you prefer to use the POSTGRES based dockeer-compose, you would change the
POSTGRES environment variables instead of the MYSQL environment variables. Just follow
the same procedure outlined below for each file.

NOTE: you cannot use the username "root" as it's a reserved name.

you understand how those changes effect the system overall.

Once, you've made changes to the necessary environment variables, we are ready to run our
docker-compose.yml file.

Other than potentially needing to change the port mappings inside the .env file, feel free to open it,
and look through it, but there are no changes beyond nginx ports that need to be made in order to
get Zabbix up and running. Again, as you get more comfortable with Zabbix, you may want to
make minor modifications to this file, but only do so if you are certain you understand what affect
the changes will have.

You can check to see if any of these ports are in use by running the command:

sudo lsof -i -P -n | grep LISTEN

This will show you a list of all of the ports on your host system that are in use. If you see 80, 8081,
443, or 8443, then move to the appropriate section in the .env file, and change the port number

associated to NGinX. Use an unused port from your host. For instance, if you find that 80 is
already in use on your host, then change the port for ZABBIX_WEB_NGINX_HTTP_PORT, and so on.

In my case the variable for NGinX was 80 and 443.

to use a port like 8022, I changed those lines to look like:

ZABBIX_WEB_NGINX_HTTP_PORT=8022
ZABBIX_WEB_NGINX_HTTPS_PORT=443

After you've changed all of the port mappings to use non-conflicting ports, save the file with
CTRL+O, then Enter to confirm, and exit nano with CTRL+X. Just remember this change. Especially
the port 80 line item. You'll need to know that port for accessing the Zabbix Web User Interface.

Now we can run:

docker-compose up -d && docker-compose logs -f

Since the video was made the docker-compose versions have changed a bit. In order to
change the port mappings, you need to look in the file labeled .env in the main folder with
all of the various compose.yaml files.

This really runs two commands: The part before the "&&" will pull down the zabbix images, and
create new containers for us. The part after the "&&" will show us the logs of Zabbix starting up
after the containers are started.

You will see some warnings in the logs about the limitation settings for CPU, Memory, etc. This is
because docker-compose is not an orchestrator. In docker-compose v3 and later, the limit values
are ignored. Such values are used in docker-swarm only.

Troubleshooting
One issue I came across during my testing of how to get all of this up and running, was that on one
of my servers, my docker-compose version was not new enough. It would continuously give me an
error about "profiles" not being supported. The key is to get a newer version of docker-compose
installed. Depending on the version of your Linux Distribution, you may have to add a more recent
repository in order to update your docker-compose version, or do more of a manual install of
docker-compose. Since there are so many variables on what OS may need which setup, it's not
feasible for me to try and guide you further on the topic. I ended up on docker-compose version
1.29.x and it worked without issue. ON 1.25.x I was getting the issue with the "profiles" section of
the docker-compose file.

The Zabbix Web Interface
You should now be able to access the Zabbix Web Interface using your web browser of choice.
You'll go to the IP address of your host machine. In my case I installed it on a machine with the IP
192.168.10.42. So in my web browser I type:

http://192.168.10.42

If you changed the 80:8080 port mapping, make sure to add the port to your IP. If I had change it
from 80:8080 to 8022:8080, I would then enter the following into my browser url bar:

http://192.168.10.42:8022

Once you see the login page (be patient, as it could take a few minutes for Zabbix to come up the
first time), use the username "Admin" and password "zabbix" to login.

http://192.168.10.42
http://192.168.10.42:8022

You are now ready to begin enrolling devices into your Zabbix monitoring solution. This is a
massive system with an incredible amount of power. Take your time, get to know what all it's
capable of doing, and what information you can gain from it. A system like this is worth the time
you'll put into making it do as much as you can.

In the video, I go through setting up one client machine. It's a manual process, but worth
watching. Make sure to watch Marc's follow up video over @OneMarcFifty where he will help you
unlock more of the power available in this awesome open source system.

https://www.youtube.com/embed/DFdDEf5iib4

Support My Channel and Content
Support my Channel and ongoing efforts through Patreon:
https://www.patreon.com/bePatron?u=234177

You should immediately navigate to the User Settings >> Profile in the left navigation bar to
change your admin user password to a long, strong password.

https://www.youtube.com/c/OneMarcFifty?app=desktop
https://www.youtube.com/embed/DFdDEf5iib4
https://www.patreon.com/bePatron?u=234177

